Fixed point results in complete Sb -metric spaces using contractive mappings

Authors

  • Manju Rani Department of Mathematics, Govt. College for Women, Murthal, Sonipat, Haryana-131027, India.
  • Nawneet Hooda Department of Mathematics, Deenbandhu Chhotu Ram University of Science And Technology (DCRUST), Murthal, Haryana-131039, India.

DOI:

https://doi.org/10.48165/

Keywords:

Fixed point theorems, complete Sb-metric spaces, contractive mappings

Abstract

In this paper we prove the existence and uniqueness of fixed points for mappings satisfying contractive conditions on the complete Sb-metric spaces and show that these mappings are Sb-continuous at such fixed points. 

References

Bakhtin, I.A. (1989). The contraction mapping principle in quasi metrics spaces, Functional Anal ysis, 30, 26–37.

Souayah, N. and Mlaiki, N. (2016). A fixed point theorem in Sb-metric spaces, J. Math. Computer Sci., 16, 131–139.

Czerwik, S. (1993). Contraction mapping in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1, 5–11.

Czerwik, S. (1998). Nonlinear set-valued contraction mappings in b-metric spaces., Atti Semin. Mat. Fis. Univ. Modena, 46, 263–276.

Sedghi, S., Shobe, N. and Aliouche, A. (2012). A generalization of fixed point theorems in S-metric spaces, Matematički Vesnik, 64(30, 258–266.

Sedghi, S. and Dung, Nguyen Van (2014). Fixed point theorems on S-metric spaces, Matematički Vesnik, 66(1), 113–124.

Sedghi, S., Gholidahneh, A., Došenović, T., Esfahani, J. and Radenović, S. (2016). Common fixed point of four maps in Sb- metric spaces, J. Linear Topol. Algebra, 5(2), 93–104. [8] Mustafa, Z. and Sims, B. (2009). Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory and Applications, Volume 2009, Article ID 917175. [9] Mustafa, Z. and Sims, B. (2006). A new approach to generalized metric space, J. Nonlinear Convex Anal., 7(2), 289–297.

Published

2020-12-26

How to Cite

Rani, M., & Hooda, N. (2020). Fixed point results in complete Sb -metric spaces using contractive mappings. Bulletin of Pure & Applied Sciences- Mathematics and Statistics, 39(2), 176–182. https://doi.org/10.48165/