Fixed point results in complete Sb -metric spaces using contractive mappings
DOI:
https://doi.org/10.48165/Keywords:
Fixed point theorems, complete Sb-metric spaces, contractive mappingsAbstract
In this paper we prove the existence and uniqueness of fixed points for mappings satisfying contractive conditions on the complete Sb-metric spaces and show that these mappings are Sb-continuous at such fixed points.
References
Bakhtin, I.A. (1989). The contraction mapping principle in quasi metrics spaces, Functional Anal ysis, 30, 26–37.
Souayah, N. and Mlaiki, N. (2016). A fixed point theorem in Sb-metric spaces, J. Math. Computer Sci., 16, 131–139.
Czerwik, S. (1993). Contraction mapping in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1, 5–11.
Czerwik, S. (1998). Nonlinear set-valued contraction mappings in b-metric spaces., Atti Semin. Mat. Fis. Univ. Modena, 46, 263–276.
Sedghi, S., Shobe, N. and Aliouche, A. (2012). A generalization of fixed point theorems in S-metric spaces, Matematički Vesnik, 64(30, 258–266.
Sedghi, S. and Dung, Nguyen Van (2014). Fixed point theorems on S-metric spaces, Matematički Vesnik, 66(1), 113–124.
Sedghi, S., Gholidahneh, A., Došenović, T., Esfahani, J. and Radenović, S. (2016). Common fixed point of four maps in Sb- metric spaces, J. Linear Topol. Algebra, 5(2), 93–104. [8] Mustafa, Z. and Sims, B. (2009). Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory and Applications, Volume 2009, Article ID 917175. [9] Mustafa, Z. and Sims, B. (2006). A new approach to generalized metric space, J. Nonlinear Convex Anal., 7(2), 289–297.