On the integral representations of some of the Horn’s double and Srivastava’s triple hypergeometric functions of matrix arguments ∗
DOI:
https://doi.org/10.48165/Keywords:
representations, hypergeometric, functions, matrix argumentAbstract
We propose to define the Horn’s double hypergeometric functions H3 and H4 of matrix arguments and deduce some integral representations for these two functions. Utilizing the first author’s definitions (Upadhyaya, Lalit Mohan and Dhami, H.S., Matrix generalizations of multiple hypergeometric functions; #1818, Nov.2001, IMA Preprint Series, University of Minnesota, Minneapolis, U.S.A. (Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/3706); Upadhyaya, Lalit Mohan, Matrix Generalizations of Multiple Hypergeometric Functions by Using Mathai’s Matrix Transform Techniques (Ph.D. Thesis, Kumaun University, Nainital, Uttarakhand, India), #1943, Nov. 2003, IMA Preprint Series, University of Minnesota, Minneapolis, U.S.A. ( https://www.ima.umn.edu/sites/default/files/1943.pdf http://www.ima.umn.edu/preprints/abstracts/1943ab.pdfhttp://www.ima.umn.edu/ preprints/nov2003/1943.pdf http://hdl.handle.net/11299/3955 https://zbmath.org/?q=an:1254.33008 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.2172\&rank=52). (Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle. net/11299/3955)) of the Srivastava’s triple hypergeometric functions HA and HB of matrix arguments, we further establish a number of integral representations for these two Srivastava’s triple hypergeometric functions, which generalize some of the recent
References
Upadhyaya, Lalit Mohan and Dhami, H.S. (Nov.2001). Matrix generalizations of multiple hyperge ometric functions; #1818, IMA Preprint Series, University of Minnesota, Minneapolis, U.S.A. (Re trieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/ 3706).
Upadhyaya, Lalit Mohan (Nov. 2003): Matrix Generalizations of Multiple Hypergeometric Functions by Using Mathai’s Matrix Transform Techniques (Ph.D. Thesis, Kumaun University, Nainital, Uttarakhand, India) #1943, IMA Preprint Series, University of Minnesota, Minneapolis, U.S.A. ( https://www.ima.umn.edu/sites/default/files/1943.pdf
http://www.ima.umn.edu/preprints/abstracts/1943ab.pdfhttp://www.ima.umn.edu/ preprints/nov2003/1943.pdf
http://hdl.handle.net/11299/3955
https://zbmath.org/?q=an:1254.33008
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.2172&rank=52). (Re trieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/ 3955).
Mathai, A.M. (1992). Jacobians of Matrix Transformations- I; Centre for Mathematical Sciences, Trivandrum, India.
Mathai, A.M. (1993). Hypergeometric Functions of Several Matrix Arguments; Centre for Math ematical Sciences, Trivandrum, India.
Slater, L.J. (1966). Generalized Hypergeometric Functions, Cambridge University Press, Cam bridge.
Mathai, A.M. (1997). Jacobians of Matrix Transformations and Functions of Matrix Argument. World Scientific Publishing Co. Pte. Ltd., Singapore.
Mathai, A.M. and Provost, Serge B. (2005). Some complex matrix-variate statistical distributions on rectangular matrices, Linear Algebra and its Applications, 410, 198-216.
Upadhyaya, Lalit Mohan (2017). On Extons triple hypergeometric functions of ma trix arguments II, Bulletin of Pure and Applied Sciences, Section-E, Mathematics & Statistics, Vol. 36(E), No.2, 207-217. (Article DOI : 10.5958/2320-3226.2017.00023.6) https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype= crawler&jrnl=09706577&AN=128769173&h=VKjrBgoGK8zPkmFuWAH0mPQ9
http://www.indianjournals.com/ijor.aspx?target=ijor:bpasms&volume=36e&issue= 2&article=013
http://www.ijour.net/ijor.aspx?target=ijor:bpasms&volume=36e&issue=2&article=013 https://www.bpasjournals.com
Srivastava, H.M. (1964). Hypergeometric functions of three variables, Ganita, 15, 97–108. [10] Srivastava, H.M. (1967). Some integrals representing triple hypergeometric functions, Rend. Circ. Mat. Palermo, (2) 16, 99–115.
Exton, H. (1976). Multiple Hypergeometric Functions and Applications. Ellis Horwood Limited, Publishers, Chichester , Sussex, England. Halsted Press: A Divison of John Wiley & Sons, Chich ester, New York, Brisbane.
Choi, Junesang, Hasanov, Anvar and Turaev, Mamasali (2012). Integral representations for Sri vastavas hypergeometric function HB , J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., Vol. 19, No. 2 (May 2012), 137–145. http://dx.doi.org/10.7468/jksmeb.2012.19.2.137
Choi, Junesang, Hasanov, Anvar and Turaev, Mamasali (2012). Integral representations for Srivastavas hypergeometric function HA, Honam Mathematical J., Vol. 34, No. 1, 113–124. http://dx.doi.org/10.5831/HMJ.2012.34.1.113
Choi, Junesang, Hasanov, Anvar and Turaev, Mamasali (2011). Decomposition formulas and inte gral representations for some Exton hypergeometric functions, Journal of the Chungcheong Math ematical Society, Vol. 24, No. 4 (December 2011), 745–758.
Mathai, A.M. (1978). Some results on functions of matrix arguments, Mathematische Nachrichten, 84, 171–177.
Bulletin of Pure and Applied Sciences Section E - Mathematics & Statistics, Vol. 39 E, No. 1, January-June, 2020
Lalit Mohan Upadhyaya, Ayman Shehata and A. Kamal
Srivastava, H.M. and Karlsson, P.W. (1985). Multiple Gaussian Hypergeometric Series, Ellis Hor wood Limited, Publishers, Chichester, Sussex, England. Halsted Press: A Divison of John Wiley & Sons, Chichester, New York, Brisbane.
Upadhyaya, Lalit Mohan (2019). Introducing the Upadhyaya integral transform, Bulletin of Pure and Applied Sciences, Section-E, Mathematics and Statistics, Vol. 38(E), No. 1, 471–510. doi 10.5958/2320-3226.2019.00051.1 https://www.bpasjournals.com/
Upadhyaya, Lalit Mohan and Dhami, H.S. (2010). Generalized Horn’s functions of matrix argu ments, Bulletin of Pure and Applied Sciences, Section-E, Mathematics and Statistics, Vol. 29(E), No. 2, 343–354 https://www.bpasjournals.com/ ; #1876, August 2002, IMA Preprint Series, University of Minnesota, Minneapolis, U.S.A.