Erratum to the paper “Fifty Years of Kurepa’s !n Hypothesis” by Žarko Mijajlović ∗
DOI:
https://doi.org/10.48165/Keywords:
Kurepa (K) function, Smarandache-Kurepa (SK) function, Encyclopedia of MathematicsAbstract
In this short note we prove that the Kurepa (K) function is different from the Smarandache-Kurepa (SK) function, therefore, these functions are not the same, as Mijajlović has unfoundedly accused the prestigious Encyclopedia of Mathematics and this author. This note is an answer to Mijajlović’s paper (Žarko Mijajlović, Fifty years of Kurepa’s !n hypothesis, Bulletin T.CLIV de l’Académie serbe des sciences et des arts – 2021 Classe des Sciences mathématiques et naturelles Sciences mathématiques, No. 46, 169–181 (2021). http://elib.mi.sanu.ac.rs/pages/browse_issue.php?db=bltn&rbr= 21, http://elib.mi.sanu.ac.rs/files/journals/bltn/46/bltnn46p169-181.pdf).
References
Mijajlović, Žarko (2021). Fifty years of Kurepa’s !n hypothesis, Bulletin T.CLIV de l’Académie serbe des sciences et des arts – 2021 Classe des Sciences mathématiques et naturelles Sciences math ématiques, No. 46, 169–181. http://elib.mi.sanu.ac.rs/pages/browse_issue.php?db=bltn& rbr=21, http://elib.mi.sanu.ac.rs/files/journals/bltn/46/bltnn46p169-181.pdf
Florentin Smarandache
Kurepa, Dj. (1964). Factorials of cardinal numbers and trees, Glasnik Mat. Fiz. Astr., 19(1-2), 7–21.
Smarandache, F. (1980). A function in number theory, Analele Univ. Timisoara, Ser. St. Math., 43, 79–88.
Sondow, J. and Weisstein, Eric W. . Smarandache Function. From MathWorld–A Wolfram Web Re source. https://mathworld.wolfram.com/SmarandacheFunction.html (Accessed on 09/02/2021). [5] Weisstein, E. . Smarandache-Kurepa Function, From MathWorldffA Wolfram Web Re source. https://mathworld.wolfram.com/Smarandache-KurepaFunction.html (Accessed on 09/02/2021).
Mudge, M.R. (1996). Introducing the Smarandache-Kurepa and Smarandache-Wagstaff Functions, Abstracts of papers presented to the Amer. Math. Soc. 17, 583.
Mudge, M.R. (1996). Introducing the Smarandache-Kurepa and Smarandache-Wagstaff functions, Sm. Not. J., 7(1-2-3), 47–50. http://fs.unm.edu/SN/SKurepa.pdf (Accessed on 09/02/2021). [8] Weisstein, Eric W. . Smarandache-Wagstaff Function. From MathWorld–A Wolfram Web Re
source. https://mathworld.wolfram.com/Smarandache-WagstaffFunction.html (Accessed on 09/02/2021).
Smarandache, F. E-mail to Žrko Mijajlović dated 30 August, 2021.
Smarandache, F. E-mail to Gradimir V. Milovanović dated 03 September, 2021