The equation for the wavefunction in nonrelativistic quantum mechanics ∗

Authors

  • Simon Davis Research Foundation of Southern California, 8861 La Jolla Drive #13595, La Jolla, CA 92037, USA.

DOI:

https://doi.org/10.48165/

Keywords:

commutator, generalized momentum operator, wave equation

Abstract

The momentum operator may be generalized for the correspondence of the limit of quantum commutators of observables with the classical commutators. The substitution of the momentum operator into the nonrelativistic equation for the conser vation of energy yields a generalization of the stationary wave equation. Replacing also the energy operator, a generalization of the time-dependent Schrödinger equations, there exists a special class of wavefunctions that satisfies the nonrelativistic wave equation in quantum theory. 

References

Heisenberg, W. (1925). Über quantentheoretische Umdeutung kinetmatischer und mechansiher Beziehungen, Zeit. Phys., 33, 879–893.

Schrödinger, E. (1926). Quantizeirung als eigenwertproblem, Ann. der Physik, 384, 361–376. [3] Davis, S. (2021). The classical limit of quantum commutation relations, Bull. Pure Appl. Sci. Sect. E. Math. Stat., 40E(1), 14–17.

Belmonte, F. and Veloz, T. (2018). On the classical-quantum relation of constants of motion, Front. Phys., 6:121. doi: 10.3389/fphy.2018.00121. https://doi.org/10.3389/fphy.2018.00121 [5] Ciaglia, F.M., Marmo, G. and Schiavone, L. 2019). From classical trajectories to quantum com mutation relations, in Classical and Quantum Physics, eds., G. Marmo, et. al., Springer Proc. Phys., 229, 163–185.

Simon Davis

Wang, G. (2020). A study of generalized covariant Hamiltonian systems on generalized Poisson manifold, arxiv.1710.1059 , arXiv:1710.10597v7 .

Wang, G. (2020) Generalized Geometric Commutator Theory and Quantum Geometric Bracket and its Uses, arXiv.2001.08566 , arXiv:2001.08566v3 .

Woit, P. (2017). Quantum Theory, Groups and Representations: An Introduction, Springer, New York.

Alicea, J. (2012). New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys., 75, 076501, 1–36. DOI:10.1088/0034-4885/75/7/076501

Published

2021-12-17

How to Cite

Davis, S. (2021). The equation for the wavefunction in nonrelativistic quantum mechanics ∗ . Bulletin of Pure & Applied Sciences- Mathematics and Statistics, 40(2), 127–134. https://doi.org/10.48165/