The classical limit of quantum commutation relations ∗

Authors

  • Simon Davis Research Foundation of Southern California, 8861 Villa La Jolla Drive #13595, La Jolla, CA 92039, USA.

DOI:

https://doi.org/10.48165/

Keywords:

quantum commutator, classical limit, generalized momentum, Hermiticity

Abstract

The commutation relations of quantum mechanics have a classical limit equal to the Poisson brackets if the coefficient is generalized to be a complex rather than purely imaginary. The effect on the uncertainty relations is described. The complex number may be identified with a modular variable and the quantization is derived from topology. 

References

Heisenberg, W. (1927). Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik, Z. für Physik, 43, 172–198.

Schrödinger, E. (1930, 1999). About Heisenberg uncertainty relation, Proc. Prussian Acad. Sci. Phys. Math. Sect., 19 (1930), 296–303; tr. Bulg. J. Phys., 26, (1999) 193–203. [3] Robertson, H.P. (1929). The uncertainty principle, Phys. Rev., 34, 163–164. [4] Deutsch, D. (1983). Uncertainty in quantum measurement, Phys. Rev. Lett., 50, 631–633. [5] Srinivas, M.D. (2003). Optimal entropic uncertainty relation for successive measurements in quan tum information theory, Pramana, 60, 1137–1152.

Erhart, J., Sponar, S., Sulyok, G. , Badurek, G., Ozawa, M. and Hasegawa, Y. (2012). Ex perimential demonstration of a universally valid error-disturbance uncertainty relation in spin measurements, Nature Physics, 8, 185–189.

Published

2021-06-30

How to Cite

Davis, S. (2021). The classical limit of quantum commutation relations ∗ . Bulletin of Pure & Applied Sciences- Mathematics and Statistics, 40(1), 14–17. https://doi.org/10.48165/