MDS Block Hankel-like Rhotrices using Conjugate Elements and Self-Dual Bases of Finite Fields
DOI:
https://doi.org/10.48165/Keywords:
Finite Fields, MDS Rhotrix, Block Rhotrix, Hankel matrix, Hankel Rhotrix, Block Hankel- like RhotrixAbstract
Maximum Distance Separable (MDS) matrices offer ideal diffusion properties and are of great importance in design of block ciphers and hash functions. A rhotrix as defined by Sani, is a coupled matrix which when used in a cryptosystem provides double security. Many authors constructed MDS Rhotrices over finite fields using matrices which are cryptographically significant. Hankel matrices have wide range of applications in engineering, coding theory and cryptography. In the present paper, we define block rhotrix and block Hankel- like rhotrix. Further, we construct MDS block Hankel-like rhotrices using self-dual basis and conjugate elements of Ϝ
References
Ajibade, A. O. (2003). The concept of rhotrices in mathematical enrichment, Int. J. Math. Educ. Sci. Tech., 34(2), 175-179.
Alfred J. Menezes, Paul C. Van Oorschot and Scott A. Vanstone. (1996, Third Edition). Hand book of Applied Cryptography, CRC Press.
Atanassov, K. T. and Shannon, A. G. (1998). Matrix-Tertions and Matrix-Noitrets: Exercises in Mathematical Enrichment. International Journal of Mathematical Education in science and technology, 29, 898-903.
Barreto P. and Rijman V. (2000). The Khazad Legacy level block cipher, NISSIE Project.
Daemen J. and Rijmen V. (2000). The design of Rijndael: AES – The Advanced Data Encryption, Springer.
Fazel, M., Pong, T. K., Sun, D. and Paul, T. (2013). Hankel matrix rank minimization with applications to system identification and realization, SIAM J. Matrix Anal. & Appl., 34(3), 946-977.
Gupta, K. C. and Ray, I. G. (2014). On constructions of MDS matrices from circulant- like matrices for lightweight cryptography, ASU/2014/1.
Junod, P. And Vaudenay, S. (2004). Perfect diffusion primitives for block ciphers building efficient MDS matrices, Lecture notes in computer science, Vol. 9-10.
Lacan, J. and Fimes, J. (2004). Systematic MDS erasure codes based on Vandermonde matrices, IEEE Trans. Commun. Lett. 8(9), 570-572.
Mohammed, A., Ezugwu, E.A. and Sani, B. (2011). On generalization and algorithmatization of heart- based method for multiplication of rhotrices, International Journal of Computer Information Systems, 2, 46-49.
Sajadieh, M., Dakhilian, M., Mala, H. and Omoomi, B. (2012). On construction of involutory MDS matrices from Vandermonde matrices, Des. Codes and Cry, 64, 287-308.
Sani, B. (2004). An alternative method for multiplication of rhotrices, Int. J. Math. Educ. Science Tech., 35(5), 777-781.
Sharma P. L., Kumar Arun, Gupta Shalini (2019). Construction of MDS Hankel Rhotrices over finite fields, AAM International Journal of Applied Mathematics, 14, 1197-1214.
Sharma, P. L., Gupta, S. and Rehan, M. (2015). Construction of MDS rhotrices using special type of circulant rhotrices over finite fields, Himachal Pradesh University Journal, 3(2), 25-43.
Sharma, P. L. and Kumar, S. (2013). On construction of MDS rhotrices from companion rhotrices over finite field, International Journal of Mathematical Sciences, 12(3-4), 271-286.
Ajibade, A. O. (2003). The concept of rhotrices in mathematical enrichment, Int. J. Math. Educ. Sci. Tech., 34(2), 175-179.
Alfred J. Menezes, Paul C. Van Oorschot and Scott A. Vanstone. (1996, Third Edition). Hand book of Applied Cryptography, CRC Press.
Atanassov, K. T. and Shannon, A. G. (1998). Matrix-Tertions and Matrix-Noitrets: Exercises in Mathematical Enrichment. International Journal of Mathematical Education in science and technology, 29, 898-903.
Barreto P. and Rijman V. (2000). The Khazad Legacy level block cipher, NISSIE Project.
Daemen J. and Rijmen V. (2000). The design of Rijndael: AES – The Advanced Data Encryption, Springer.
Fazel, M., Pong, T. K., Sun, D. and Paul, T. (2013). Hankel matrix rank minimization with applications to system identification and realization, SIAM J. Matrix Anal. & Appl., 34(3), 946-977.
Gupta, K. C. and Ray, I. G. (2014). On constructions of MDS matrices from circulant- like matrices for lightweight cryptography, ASU/2014/1.
Junod, P. And Vaudenay, S. (2004). Perfect diffusion primitives for block ciphers building efficient MDS matrices, Lecture notes in computer science, Vol. 9-10.
Lacan, J. and Fimes, J. (2004). Systematic MDS erasure codes based on Vandermonde matrices, IEEE Trans. Commun. Lett. 8(9), 570-572.
Mohammed, A., Ezugwu, E.A. and Sani, B. (2011). On generalization and algorithmatization of heart- based method for multiplication of rhotrices, International Journal of Computer Information Systems, 2, 46-49.
Sajadieh, M., Dakhilian, M., Mala, H. and Omoomi, B. (2012). On construction of involutory MDS matrices from Vandermonde matrices, Des. Codes and Cry, 64, 287-308.
Sani, B. (2004). An alternative method for multiplication of rhotrices, Int. J. Math. Educ. Science Tech., 35(5), 777-781.
Sharma P. L., Kumar Arun, Gupta Shalini (2019). Construction of MDS Hankel Rhotrices over finite fields, AAM International Journal of Applied Mathematics, 14, 1197-1214.
Sharma, P. L., Gupta, S. and Rehan, M. (2015). Construction of MDS rhotrices using special type of circulant rhotrices over finite fields, Himachal Pradesh University Journal, 3(2), 25-43.
Sharma, P. L. and Kumar, S. (2013). On construction of MDS rhotrices from companion rhotrices over finite field, International Journal of Mathematical Sciences, 12(3-4), 271-286.