Recent Advances on Fixed Point Theorems
DOI:
https://doi.org/10.48165/Keywords:
Complete metric space, fixed point, contraction mappings, non-expansive mappingsAbstract
This paper mainly focuses on the recent advances in the fixed point theory. Some discussions are presented on the relation of fixed point theorems to applications, and areas are delineated in the future research directions as well.
References
Agarwal R. and Karapnar E. (2013). Remarks on some coupled fixed point theorems in G-metric spaces, Fixed Point Theory Appl., 2013 (1), 12-23.
Aksoy A. G. and Khamsi M. A. (2016). Nonstandard Methods in Fixed Point Theory, Springer, New York, Berlin, (1990). J. nonlinear sci. appl., 9 (2016), 3931-3938.
Alber Y. and Guerre-Delabriere S. (1997). Principles of weakly contractive maps in Hilbert spaces, Operator Theory, Advances and Applications, 98, 7-22.
Alegre C., Fulga A., Karapinar E. and Tirado P. (2020). A discussion on p-Geraghty contraction on mw-quasi metric spaces. Mathematics, 8(9), 1437.
Alqahtani B., Karapinar E. and Ozturk A. (2018). On (��, ��)��-Contractions in the Extended b-Metric Space,Filomat, 32(15), 5337-5345.
Amini A. (2012). Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory and Applications, 2012 (1), 1-10
Ansari A. (2014). Note on��, ��-contractive type mappings and related fixed point, in The 2nd regional conference on mathematics and applications, Tonekabon, Iran, September, Noor Univ., (2014), 377- 380.
Arshad M., Ahmad J. and KarapJnar E. (2013). Some Common Fixed Point Results in Rectangular Metric Spaces, International Journal of Analysis, 2013, 7 pages.
Arshad M., Shoaib A., Vetro P. (2013). Common fixed points of a pair of Hardy Rogers type mappings on a closed ball in ordered dislocated metric spaces, J. function spaces Appl., 2013, 9 pages. 10. Azam A. and Arshad M. (2008). Kannan fixed point theorem on generalized metric spaces, Journal of Nonlinear Sciences and its Applications, 1(1), 45-48.
Azam A., Arshad M., and Beg I. (2019). Banach contraction principle on cone rectangular metric spaces, Applicable Analysis and Discrete Mathematics, 3(2), 236-241.
Bakhtin I. (1989). The contraction mapping principle in quasimetric spaces, Func. An., Gos. Ped. Inst. 13. Banach S. (1922). Sur les operations dans les ensembles abstraitsetleur application aux quationsintegrales, Fundam. Math., 3, 133-181.
Boyd D. and Wong J. (1969). Nonlinear contractions, Proceedings of the American Mathematical Society, 20(2), 458-464.
Branciari A. (2000). A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, PublicationesMathematicae Debrecen, 57 (1-2), 31-37.
Brouwer L. (1912). HberAbbildungen von Mannigfaltigkeiten, Math. Ann. 71, 97-115. 17. Bukatin M., Kopperman R., Matthews S. and Pajoohesh H. (2009). Partial metric spaces, American Mathematical Monthly, 116 (8), 708-718.
Caristi J. (1976). Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215, 241-251.
Chatterjee S. K. (1972). Fixed point theorems, Comtes. Rend. Acad. Bulgaria Sci., (25), 727-730. 20. Chifu C., Patrusel G. (2017). Fixed point results for multi valued Hardy-Rogers contractions in b metric spaces, Filomat, 31(8), 2499-2507.
Cho Y., Martnez-Moreno J., Roldan A. and Roldan C.. (2015). Multidimensional fixed point theorems under (��, ��)-contractive conditions in partially ordered complete metric spaces, Journal of Computational andApplied Mathematics, 273), 76-87.
Ciric L. B. (1974). A generalization of Banachs contraction principle, Proc. Am. Math. Soc., 45(2), 267- 273.
Ciric L. B. (2003). Fixed Point Theory: Contraction Mapping Principle. Faculty of Mechanical Engneering, University of Belgrade, Serbia.
Delbosco D. (1977). H_nestensione di unteoremasulpuntosso di S. Reich, Rend. Sem. Mat. Univers. Politean. Torino, 35, 233-238.
Delena R., and Elisabetta M. (1979). Contractive Kannanmaps in compact spaces, Riv. Mat. Univ. Parma. 4(5), 141-145.
Dhamodharan D. and Krishnakumar R. (2017). Cone S-metric space and fixed point theorems of contractive mappings, Annals of Pure Appl. Math., 14(2), 237-243.
Dugundji J. and Granas A. (1982). Fixed Point Theory, Polska Akademia Nauk, Monograe Matematyczne, 61.
Edelstein M. (1962). On fixed and periodic points under contractive mappings, Journal of the London Mathematical Society, 1(1), 74-79.
Ekeland I. (1974). On the variational principle. Journal of Mathematical Analysis and Applications, 47(2), 324-353.
Gahler S. (1963). 2-metrische Raumundihretopologischestrukuren, Math. Nachr, 26(1-4), 115-148. 31. Gahler S. (1965). Hber die uniformisierbarkeit 2-metric scheaume, Math. Nachr. 28 (3-4), 235-244. 32. George R., Radenovic S., Reshma K.P. and Shukla S. (2015). Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl., (8), 1005-1013.
Goebel K. and Kirk W. A. (1990).Topics in Metric Fixed Point Theory, Cambridge University Press. 34. Gopal D., Patel D. and Shukla S. (2018). Banach fixed point theorem and its generalizations, Background and recent developments of metric fixed point theory, Tylor and Francis group, (2018), 1- 25.
Hardy G. E. and Rogers T. D.. (1973). A generalization of fixed point theorem of Reich, Canadian Mathematical Bulletin, 16(2), 201-206.
Hamoud A. and Ghadle K.. (2018). Existence and uniqueness of the solution for Volterra Fredholmintegro-differential equations, Journal of Siberian Federal University. Math. Phys., 1(6), 692- 701.
Hamoud A. and Ghadle K.. (2018). Existence and uniqueness of solutions for fractional mixed Volterra-Fredholmintegro-differential equations, Indian J. Math. 60(3), 375-395.
Hamoud A., Ghadle K., BaniIssa M. and Giniswamy. (2018). Existence and uniqueness theorems for fractional Volterra-Fredholmintegro-differential equations, Int. J. Appl. Math. 31(3), 333-348. 39. Hamoud A. and Ghadle K. (2019). Some new existence, uniqueness and convergence results for fractional Volterra-Fredholmintegro-differential equations, J. Appl. Comput. Mech. 5(1), 58-69. 40. Hamoud A. (2020). Existence and uniqueness of solutions for fractional neutral Volterra Fredholmintegro-differential equations, Advances in the Theory of Nonlinear Analysis and its Application, 4(4), 321-331.
Jachymski J. R. (1997). Equivalence of some contractivity properties over metrical structure, Proceedings of the American Mathematical Society, 125(8), 2327-2335.
Jin M., and Piao Y. (2018), Generalizations of Banach-Kannan-Chatterjea type fixed point theorems on non-normed cone metric spaces with Banach algebras, adv. Fixed point theory, 8(1), 68-82.
Kadeburg Z. and Radenovic S. (2013). A note on various types of cones and fixed point results in cone metric spaces, Asian Journal of Mathematics and Applications, 2013, 7 pages.
Kadelburg Z. and Radenovic S. (2015). Pata-type common fixed point results in b-metric and b rectangular metric spaces, J. Nonlinear Sci. Appl., 8(6), 944-954.
Kada O., Suzuki T. and Takahashi W. (1996). Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Mathematica Japonicae, 44(2), 381-391.
Kamran T., Samreen M. and UL Ain Q., (2017). A Generalization of b-Metric Space and Some Fixed Point Theorems, Mathematics, 5(2), 19 pages.
Khan M., Swaleh M. and Sessa S. (1984). Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society, 30(1), 1-9.
Kannan R. (1968). Some remarks on fixed points, Bull Calcutta Math. Soc., 60, 71-76. 49. Lakzian H., Rakocevic V., Aydi H. (2019). Extensions of Kannan contraction via w-distances, AequationesMathematicae, 93(6), 1231-1244.
Liu H. and Shaoyuan X.. (2013). Cone metric spaces with Banach algebras and fixed point theorems of generalizedLipschitz mappings, Fixed Point Theory Applications, 2013(1), 1-16.
Long-Huang H. and Xian Z. (2007). Cone metric spaces and fixed point theorems of contractive mappings, Journal of mathematical Analysis and Applications, 332(2), 1468-1476. 52. Matthews S. (1994). Partial metric topology, Annals of the New York Academy of Sciences-Paper Edition, 728, 183-197.
Matkowski J. (1975). Integrable solutions of functional equations, Dissertations Math. CXXVII (Rozprawy) Warszawa.
Meir A. and Keeler E. (1969). A theorem on contraction mappings, Journal of Mathematical Analysis and Applications, 28(2), 326-329.
Meyer C. (2000). Matrix analysis and applied linear algebra, Siam, 71.
Mongkolkeha C., Cho Y. J. (2018). Some coincidence point theorems in ordered metric spaces via w distance. Carpathian J. Math., 34(2), 207-214.
Yilmaz Ozgx N. and Tas N. (2017). Some fixed point theorems on S-metric spaces, Mat. Vesnik, 69(1), 39-52.
Popa V. (1997). Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Mat. Univ. Bacau, 7, 127-133.
Popa V.. (1999). On some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math., 32(1), 157-163.
Piri H. and Kumam P.. (2014). Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory and Applications, 2014(1), 1-11.
Presic S. B. (1965). Sur la convergence des suites, Comptes Rendus Hebdomadatres Des Seances De L Acamete Des Sciences, 260(14), 3830.
Rakotch E. (1962). A note on contractive mappings, Proceedings of the American Mathematical Society, 13(3), 459-465.
Reich S. (1971). Kannan's fixed point theorem, Bull, Univ. Mat. Italiana, 4(4), 1-11. 64. Rhoades B. E. (1977). A comparison of various definitions of contractive mappings, Transactions of the American Mathematical Society, 226, 257-290.
Rhoades B. E. (2001). Some theorems on weakly contractive maps, Nonlinear Analysis: Theory, Methods &Applications, 47(4), 2683-2693.
Rodrigues H. (2009). A note on the relationship between spectral radius and norms of bounded linear operators, Matematica Contemporanea, 36, 131-137.
Saluja G. S. Fixed point theorems on cone S-metric spaces using implicit relation, CUBO, A Mathematical Journal, 22(2)(2020), pp. 273-289.
Samet B., Vetro C. and Vetro P.. (2012). Fixed point theorems for α,θ-contractive type mappings, Nonlinear Anal., Theory Methods Appl., 75(4), 2154-2165.
Sedghi S., Shobe N. and Aliouche A. (2012). A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64(3), 258-266.
Sedghi S. and Dung N. V. (2014). Fixed point theorems on S-metric space, Mat. Vesnik, 66(1), 113- 124.
Sarkhel D. N. (1999). Banachs fixed point theorem implies Kannans, Bull. Cal. Math. Soc. 91(2), 143- 144.
Shukla D. P., Tiwari S. K. (2011), Fixed point theorem for weakly s-contractive mappings, Gen. Math. Notes, 4(1), 28-34.
Shukla S., Radenovic S., Cojbasic V. (2013). Some common fixed point theorems in 0-complete metric like spaces, Vietnam Journal of Mathematics, 41(3), 341-352.
Singh B., Jain S., and Bhagat P. (2012). Cone 2-metric space and Fixed point theorem of contractive mappings, CommentationesMatematicae, 52(2), 143-151.
Skof F. (1977). Teorema di puntisso per applicazionineglispazimetrici, Atti. Aooad. Soi. Torino, 111, 323-329.
Suzuki T., Takahashi W. (1996). Fixed point theorems and characterizations of metric completeness, Topological Methods in Nonlinear Analysis, 8(2), 371-382.
Suzuki T. (2008). Fixed point theorems and convergence theorems for some generalized non-expansive mappings, Journal of Mathematical Analysis and Applications, 340(2), 1088-1095. 78. Suzuki T. (2009). A new type of fixed point theorem in metric spaces, Nonlinear Analysis: Theory, Methods &Applications, 71(11), 5313-5317.
Tarski A. (1955). A lattice theoretical fixed point theorem and its applications, Pacic journal of Mathematics, 5(2), 285-309.
Tiwari S. (2005). Cone 2-metric spaces and Fixed point theorems for pair of contractive mappings, Journal of Progressive Research in Mathematics, 5(3), 543-552.
Tiwari S. (2015). Cone 2-metric spaces and an extension of fixed point theorems for contractive mappings, IOSR Journal of mathematics, 11(4), 01-08.
Van R. R. (2009). Own Lecture Notes Functional Analysis, Helmond.
Wardowski D. (2012). Fixed point of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications, 2012(1), 1-16.