Estimation of the Population Mean By Developing a New Estimator
DOI:
https://doi.org/10.48165/Keywords:
Mean Square Error, Taylor Series Method, Ratio Estimator, Population Mean, Simple Random SamplinAbstract
In the presented paper, authors propose a new estimator by combining two already exist ratio estimators and estimate the population mean in simple random sampling. Authors also determine the mean square error (MSE) of this estimator. In the last of this paper, they show that the presented estimator is more efficient than the existing ratio estimators theoretically and numerically.
References
Cochran, W.G. (1940) The estimation of yields of cereal experiments by sampling for ratio of grain to total produce, J. Agri. Sci., 30, 262-275.
Srivastava, S.K. (1980) A class of estimators using auxiliary information in sample surveys, Canad. J. Statist., 8, 253-254.
Srivastava, S.K. and Jhajj, H.S. (1981) A class of estimators of the population mean in survey sampling using auxiliary information, Biometrika, 68(1), 341-343.
Bahl, S. and Tuteja, R.K. (1991) Ratio and product type exponential estimators, Info. & Opti. Sci., 12, 159- 163.
Singh, H.P. and Tailor, R. (2003) Use of known correlation coefficient in estimating the finite population mean, Statist. In Transi., 6, 555-560.
Kadilar, C. and Cingi, H. (2004) Ratio estimators in simple random sampling, App. Math. and Comp., 151, 893-902.
Sisodia, B.V.S. and Dwivedi, V.K. (1981) A modified ratio estimator using coefficient of variation of auxiliary variable, J. Indian Soc. Agri. Stat., 33, 13-18.
Kadilar, C., Unyazici, Y. and Cingi, H. (2009) Ratio estimator for the population mean using ranked set sampling, Statistical Papers, 50(2), 301-309.
Wolter, K.M. (2005) Introduction to variance estimation, 2ed, Springer, New York, USA. 10. Cochran, W.G. (1953) Sampling techniques, 1ed, Asian Publishing House, Bombay.