Extended Horn’s hypergeometric function H11∗
DOI:
https://doi.org/10.48165/bpas.2023.42E.1.6Keywords:
Horn’s hypergeometric function H11, the generalization of the Pochham mer symbol, limit formulas, recursion formulas, Laplace transform, Mellin transform, Fourier transform, Upadhyaya transformAbstract
In this paper we introduce an extension of the Horn’s hypergeometric function H11. Furthermore, we investigate the limit formulas, integral representations, differentiation formulas, infinite sums, recursion formulas, Laplace, Mellin and fractional Fourier transforms for the extended Horn’s hypergeometric function H11. Finally, we discuss double Laplace and double Mellin transforms of this function.
References
Chaudhry, M. A., Qadir, A., Raque, M. and Zubair, S. M. (1997). Extension of Euler’s Beta function, J. Comput. Appl. Math., 78, 19–32.
Choi, J., Rathie, A. K. and Parmar, R. K. (2014). Extension of extended beta, hypergeometric and confluent hypergeometric, Honam Mathematical Journal, 36(2), 357–385. [3] Romero, L., Cerutti, R. and Luque, L. (2011). A new fractional Fourier transform and convolutions products, International Journal of Pure and Applied Mathematics, 66, 397–408. [4] Saigo, M. (1978). A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., XI-2, 135–143.
Bertrand, J., Bertrand, P. and Ovarlez, J. (2000). The Mellin transform in The Transforms and Applications Handbook, Second Edition, D. Alexander,Ed., CRC Press, Boca Raton, FL, USA. [6] Debnath, L. and Bhatta, D. (2007). Integral Transforms and Their Applications, Chapman and Hall, CRC Press, Boca Raton, FL, USA.
Sahin, R., Yagci, O., Yagbasan, M. B., Cetinkaya, A. and Kiymaz, I. O. (2018). Further general ization of Gamma, Beta and related functions, Journal of Inequalities and Special Functions, 9, 1–7.
Sahin, Recep and Yagci, Oguz (2020). A new generalization of Pochhammer symbol and its ap plications, Applied Mathematics and Nonlinear Sciences, 5(1), 255–266.
Debnath Lokenath, The double Laplace transforms and their properties with applications to func tional, integral and partial differential equation, International Journal of Applied and Computa tional Mathematics, 2(2), 223–241.
Hassan, Eltayeb and Kilicman, Adel (2007). A note of Mellin transform and partial differential equations, International Journal of Pure and Applied Mathematics, 34(4), 457–467. [11] Upadhyaya, L. M. (2019). Introducing the Upadhyaya integral transform, Bull. Pure Appl. Sci. Sect. E Math. Stat., 38(1), 471–510.
Upadhyaya, L. M., Shehata, A. and Kamal, A. (2021). An update on the Upadhyaya transform, Bull. Pure Appl. Sci. Sect. E Math. Stat., 40(1), 26–44.
Srivastava, H. M. and Karlsson, Per W. (1985). Multiple Gaussian Hypergeometric Series, John Wiley and Sons, New York.