Certain properties of modified Hermite-type matrix polynomials ∗

Authors

  • M S Metwally Department of Mathematics, Faculty of Science (Suez), Suez Canal University, Egyp
  • S Abo-Hasha Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt.
  • Karima Hamza Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt.

DOI:

https://doi.org/10.48165/bpas.2023.42E.1.2

Keywords:

Generalized Hermite-type matrix polynomials, Generating matrix func tions, modified Chebyshev, modified Legendre, modified Hermite-Hermite

Abstract

 This paper deals with the investigation of an expansion formula, a summa tion formula, a multiplication theorem, an addition theorem, matrix recurrence relations, fractional integrals, fractional derivatives, Laplace transform, Mellin transform and Frac tional Fourier transform for the modified Hermite-type matrix polynomials and some other properties. We also give new definitions for the modified Chebyshev’s-type, the modified Legendre’s-type and the modified Hermite-Hermite-type matrix polynomials by using these polynomials and we further prove some new results and relations. 

References

Ahmed, S. and Khan, M. A. (2014). A note on the polynomials H(a)

n (x), Society for Special

Functions and their Applications, 13, 62–69.

Altin, A. and Çekim, B. (2012). Generating matrix functions for Chebyshev matrix polynomials of the second kind, Hacettepe Journal of Mathematics and Statistics, 41(1), 25–32. [3] Bertrand, J., Bertrand, P. and Ovarlez, J. (2000). The Mellin transform, in The Transforms and Applications Handbook, , 2nd edition, D. Alexander, Ed., CRC Press, Boca Raton,FL, USA. [4] Debnath, L. and Bhatta, D. (2007). Integral Transforms and Their Applications, Chapman and Hall CRC Press, Boca Raton,FL, USA.

Dunford, N. and Schwartz, J. (1956). Linear Operators, Part I, Interscience, New York. [6] Defez, E. and Jódar, L. (1998). Some applications of the Hermite matrix polynomials series expansions, Journal of Computational and Applied Mathematics, 99(1-2), 105–117. [7] Defez, E. and Jódar, L. (2002). Chebyshev matrix polynomails and second order matrix differ ential equations, Utilitas Mathematica, 61, 107–123.

Ditkin, V. A. and Prudnikov, A. P. (1965). Integral Transform and Operational Calculus (English Translation), Moscow, Pergaman Press, Oxford.

Jódar, L. and Defez, E. (1998). On Hermite matrix polynomials and Hermite matrix functions, Approximation Theory and its Applications, 14(1), 36–48.

Jódar, L. and Company, R. (1996). Hermite matrix polynomials and second order matrix differ ential equations, Approximation Theory and its Applications, 12(2), 20–30.

Jódar, L. and Cortés, J. C. (1998). Some properties of Gamma and Beta matrix functions, Applied Mathematics Letters, 11(1), 89–93.

Jódar, L. and Cortés, J. C. (1998). On the hypergeometric matrix function, Journal of Compu tational and Applied Mathematics, 99, 205–217.

Jódar, L. and Cortés, J. C. (2000). Closed form general solution of the hypergeometric matrix differential equation, Mathematical and Computer Modelling, 32, 1017–1028. [14] Kargin, L. and Kurt, V. (2015). Chebyshev-type matrix polynomials and integral transforms, Hacettepe Journal of Mathematics and Statistics, 44(2), 341–350.

Khan, M. A., Khan, A. H. and Ahmad, N. (2011). A study of modified Hermite polynomials, Pro Mathematica, 25, 49–50.

McBride, A. C. and Roach, G. F. (1985). Fractional Calculus, Research Notes in Mathematics, Vol. 138, Pitman, Boston ff London ff Melbourne.

Metwally, M. S., Mohamed, M. T. and Shehata, A. (2009). Generalizations of two-index two variable Hermite matrix polynomials, Demonstratio Mathematica, 42, 687–701. [18] Metwally, M. S., Mohamed, M. T. and Shehata, A. (2008). On Hermite-Hermite matrix polyno mials, Mathematica Bohemica, 133, 421–434.

Metwally, M. S., Mohamed, M. T. and Shehata, A. (2015). On Chebyshev matrix polynomials, matrix differential equations and their properties, Afrika Matematika, 26(5), 1037–1047. [20] Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York.

Oldham, K. B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, USA. [22] Polya, G. and Szegö, G. (1976). Problems and Theorems in Analysis, Vol. I, Springer-Verlag, New York.

Romero, L., Cerutti, R. and Luque, L. (2011). A new fractional Fourier transform and convolutions products, International Journal of Pure and Applied Mathematics, 66, 397–408. [24] Sayyed, K. A. M., Metwally, M. S. and Batahan, R. S. (2003). On generalized Hermite matrix polynomials, Electronic Journal of Linear Algebra, 10, 272–279.

Shehata, A. (2015). On modified Laguerre matrix polynomials, Journal of Natural Sciences and Mathematics, 8(2), 153–166.

Shehata, A. (2016). A new kind of Legendre matrix polynomials, Gazi University Journal of Science, 29(2), 535–558.

Shehata, A. (2015). Connections between Legendre with Hermite and Laguerre matrix polyno mials, Gazi University Journal of Science, 28(2), 221–230.

Shehata, A. (2016). Some relations on Konhauser matrix polynomials, Miskolc Mathematical Notes, 17(1), 605–633.

Shehata, A. (2018). On new extensions of the generalized Hermite matrix polynomials, Acta et Commentationes Universitatis Tartuensis de Mathematica, 22(2), 203–222.

Shehata, A. (2019). Certain properties of generalized Hermite-type matrix polynomials using Weisner’s group theoretic techniques, Bulletin of the Brazilian Mathematical Society, New Series, 50, 419–434.

Shehata, A. and Çekim, B. (2016). Some relations on Hermite-Hermite matrix polynomials, Uni versity Politechnica of Bucharest Scientific Bulletin, Series A: Applied Mathematics and Physics, 78(1), 181–194.

Srivastava, H. M. and Manocha, H. L. (1984). A Treatise on Generating Functions, Ellis Horwood, New York.

Srivastava, H. M. and Karlsson, Per W. (1985). Multiple Gaussian Hypergeometric Series, John Wiley and Sons, New York.

Samko, S. G., Kilbas, A. A. and Marichev, O. I. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Amsterdam. [35] Upadhyaya, L. M. and Shehata, A. (2015). A new extension of generalized Hermite matrix polynomials, Bulletin of the Malaysian Mathematical Sciences Society, 38(1), 165–179.

M. S. Metwally, S. Abo-Hasha and Karima Hamza

Upadhyaya, L. M. (2019). Introducing the Upadhyaya integral transform, Bull. Pure Appl. Sci. Sect. E Math. Stat., 38(1), 471–510.

Upadhyaya, L. M., Shehata, A. and Kamal, A. (2021). An update on the Upadhyaya transform, Bull. Pure Appl. Sci. Sect. E Math. Stat., 40(1), 26–44.

Published

2023-06-18

How to Cite

Metwally, M.S., Abo-Hasha, S., & Hamza, K. (2023). Certain properties of modified Hermite-type matrix polynomials ∗ . Bulletin of Pure & Applied Sciences- Mathematics and Statistics, 42(1), 5–26. https://doi.org/10.48165/bpas.2023.42E.1.2