A study on completely equivalent generalized normed spaces ∗
DOI:
https://doi.org/10.48165/bpas.2023.42E.1.1Keywords:
Normed space, Banach space, EquivalentAbstract
According to intuition, two spaces X and Y are equivalent if they may be bent, shrunk, or expanded into one another. Spaces that are homotopy-equivalent to a point are called contractible. A vector space can be equipped with more than one norm. In this paper, the necessary and sufficient conditions for n-norms to be completely equiv alent on linear n-Banach spaces are obtained.
References
Ahire, , Patil, J., Hardan, B., Hamoud, A. A. and Bachhav, A. (2022). Recent advances on fixed point theorems, Bull. Pure Appl. Sci. Sect. E Math. Stat., 41(1), 1–11.
Bachhav, A., Patil, J., Hardan, B., Hamoud, A. and Emadifar, H. (2022). A new result on Branciari metric space using (α; γ)-contractive mappings, Topological Algebra and its Applications, 10(1), 103–112.
Gähler, S. (1969). Untersuchungen über verallgemeinerte m-metrishe räume I, Math. Nachr., 40, 165–189.
Gähler, S. (1964). Lineare 2-normierte räume, Math. Nachr., 28, 1–43.
Gunawan, H. (2002). On n-inner products, n-norms, and the Cauchy Schwarz inequality., Sci. Math. Jpn., 55, 53–60.
Hardan, B., Patil, J., Hamoud, A. A., Bachhav, A., Emadifar, H. and Guunerhan, H. (2022). Gen eralizing contractive mappings on b-rectangular metric space, Advances in Mathematical Physics, 2022, 10 pp.
Hardan, B., Patil, J., Chaudhari, J. and Bachhav, A. (2020). Approximate fixed points for n linear functional by (µ, σ)-nonexpansive mappings on n-Banach spaces, Journal of Mathematical Analysis and Modeling, 1(1), 20–32.
Hardan, B., Patil, J., Chaudhari, A. and Bachhav, A. (2020). Caristi type fixed point theorems of contractive mapping with application, Proceedings of the One Day National Conference on Recent Advances in Sciences held on 13th February, 2020 at the Department of Physics, Chemistry, Mathematics, Botany and Zoology, Shivaji Arts, Commerce and Science College, Kannad, District - Aurangabad, Maharshtra, India, 609–614.
Kim, S. S. and Cho, Y. J. (1994). Strict convexity in linear n-norm spaces, Demonstration Math., 29(4), 739–744.
Konca, S. and Idris, M. (2015). Equivalence among three 2-norms on the space of p-summable sequences, Journal of Inequalities and Special Functions, 7(4), 218–224.
Kristiantoo, T. R., Wibawa, R. A. and Gunawan, H. (2013). Equivalence relation of n-norms on a vector space, Mat. Vesnik., 65(4), 488–493.
Malceski, R. (2004). Strong n-convex n-normed spaces, Mat. Bull., 21, 81–102. [13] Misiak, A. (1989). n-Inner product spaces, Math. Nacher., 140, 299–319. [14] Patil, J., Hardan, B., Hamoud, A. A., Bachhav, A., Emadifar, H., Ghanizadeh, A., Edalatpanah,
S. A. and Azizi, H. (2022). On (η, γ)_(f, g)-contractions in extended b-metric spaces, Advances in Mathematical Physics, Volume 2022, Article ID 9290539, 8 pp.
Patil, J. and Hardan, B. (2019). On fixed point theorems in complete metric space, Journal of Computer and Mathematical Sciences, 10(7), 1419–1425.
Patil, J., Hardan, B. and Bachhav, A. (2022). Suzuki type common fixed point result on h-metric space, International Journal of Advanced Research in Science, Communication and Technology, 2(3), 5 pp.