A study of the k-Horn’s hypergeometric function H9,k∗

Authors

  • M S Metwally . Department of Mathematics, Faculty of Science (Suez), Suez Canal University, Egypt.
  • Lalit Mohan Upadhyaya Department of Mathematics, Municipal Post Graduate College, Mussoorie, Dehradun, Uttarakhand, India-248179.
  • S Abo-Hasha Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt.
  • Karima Hamza Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt.

DOI:

https://doi.org/10.48165/bpas.2023.42E.2.4

Keywords:

Horn’s hypergeometric H9, the k- Pochhammer symbol, limit formulas, re cursion formulas, Upadhyaya transform, Laplace transform, Mellin transform, fractional Fourier transform, double Upadhyaya transform, double Laplace transform, double Mellin transform

Abstract

 In this paper, we introduce the k-Horn’s hypergeometric function H9,k and we investigate its limit formulas, integral representations, differentiation formulas, infinite sums, recursion formulas, the Laplace, Mellin, fractional Fourier, double Laplace and double Mellin transforms for the k-Horn’s hypergeometric function H9,k. Finally, we discuss the fractional integration and the k-fractional differentiation . 

References

Erdélyi, A., Mangus, W., Oberhettinger, F. and Tricomi, F.G. (1953). Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London. [2] Horn, J. (1931). Hypergeometrische Funktionen zweier Vernäderlichen. Math. Ann., 105, 381–407. [3] Díaz, R. and Pariguan, E. (2007). On hypergeometric functions and Pochhammer k-symbol, Di vulg. Mat., 15(2), 179–192.

Romero, L., Cerutti, R. and Luque, L. (2011). A new fractional Fourier transform and convolutions products, International Journal of Pure and Applied Mathematics, Vol.66, 397–408. [5] Saigo, M. (1978). A remark on integral operators involving the Gauss hypergeometric functions, Math Rep Kyushu Univ., 11, 135–143.

Bertrand, J., Bertrand, P. and Ovarlez, (2000). The Mellin transform,in The Transforms and Applications Handbook (second Edition), D. Alexander (Editor), CRC Press, Boca Raton, FL, USA.

Debnath, L. and Bhatta, D. (2007). Integral Transforms and Their Applications, Chapman and Hall CRC Press, Boca Raton, FL, USA.

Mubeen, S. and Rehman, A. (2014). A note on k-Gamma function and Pochhammer k-symbol, J. Inf. Math. Sci., 6, 93–107.

Debnath, L. (2016). The double Laplace transforms and their properties with applications to functional, integral and partial differential equations, International Journal of Applied and Com putational Mathematics, 2(2), 223–241.

Eltayeb, Hassan and Kilicman, Adel (2007). A note of Mellin transform and partial differential equations, International Journal of Pure and Applied Mathematics, 34(4), 457–467. [11] Dorrego, G. A., Cerutti, R. A. (2012). The k-Mittag-Leffler function, Int. J. Contemp. Math. Sci, 7(15), 705–716.

Romeo, L. G., Dorrego, G. A. and Cerutti, R. A. (2012). The k-Bessel function of first kind, Int. Math. Forum, 7(38), 1859–1864.??

Ali, A., Iqbal, M. Z., Iqbal, T. and Hadir, M. (2021). Study of Generalized k?hypergeometric functions, Computer Science, 16(1), 379–388.

Mittal, Ekta, Joshi, Sunil and Suthar, Daya Lal (2022). Some results on k-hypergeometric function, TWMS Journal Of Applied And Engineering Mathematics, 12(4), 1480–1489. [15] Mubeen, S. and Habibullah, G. (2012). k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7, 89–94.

Romero, L. G., Luque, L. L., Dorrego, G. A. and Cerutti, R. A. (2013). On the k-Riemann-Liouville fractional derivative, Int. J. Contemp. Math. Sci., 8, 41–51.

Upadhyaya, L. M. (2019). Introducing the Upadhyaya integral transform, Bull. Pure Appl. Sci. Sect. E Math. Stat., 38(1), 471–510.

Upadhyaya, L. M., Shehata, A. and Kamal, A. (2021). An update on the Upadhyaya transform, Bull. Pure Appl. Sci. Sect. E Math. Stat., 40(1), 26–44.

Published

2023-12-25

How to Cite

Metwally, M.S., Upadhyaya, L.M., Abo-Hasha, S., & Hamza, K. (2023). A study of the k-Horn’s hypergeometric function H9,k∗ . Bulletin of Pure & Applied Sciences- Mathematics and Statistics, 42(2), 126–142. https://doi.org/10.48165/bpas.2023.42E.2.4