Role of MicroRNAs in Mammalian Reproduction

Authors

  • Shavi Embryo Biotechnology Lab, Animal Biotechnology Division, ICAR- National Dairy Research Institute, Karnal-132001 (Haryana), India
  • Sudha Saini Embryo Biotechnology Lab, Animal Biotechnology Division, ICAR- National Dairy Research Institute, Karnal-132001 (Haryana), India
  • Tanya Gupta Embryo Biotechnology Lab, Animal Biotechnology Division, ICAR- National Dairy Research Institute, Karnal-132001 (Haryana), India
  • N L Selokar Embryo Biotechnology Lab, Animal Biotechnology Division, ICAR- National Dairy Research Institute, Karnal-132001 (Haryana), India
  • M K Singh Embryo Biotechnology Lab, Animal Biotechnology Division, ICAR- National Dairy Research Institute, Karnal-132001 (Haryana), India

DOI:

https://doi.org/10.48165/aru.2023.3.2.4

Keywords:

MicroRNAs, Reproduction, Oogenesis, Spermatogenesis

Abstract

MicroRNAs are small, endogenous, non-coding RNA molecules that are around 19-25 nucleotides long. Most miRNAs are produced via transcription of DNA sequences into primary miRNAs, precursor miRNAs, and then mature miRNAs. These miRNA molecules base-pair to mRNAs to control gene expression post-transcriptionally. Mammalian genome now has over 2000 annotated miRNAs which are thought to influence one-third of the genes in the genome since each miRNA can regulate hundreds of target genes. miRNAs are involved in morphogenesis, tissue maintenance, cell development, differentiation, apoptosis, and metabolism etc. This review aims to summarize the current understanding of the role of miRNAs in various stages of mammalian reproductive biology and their involvement in reproductive disorders. We have also summarized the recent advances about miRNA and provide an updated overview of the literature, including the most recent and relevant studies.

References

Abdalla M, Deshmukh H, Atkin SL, Sathyapalan T. miRNAs as a novel clinical biomarker and therapeutic targets in polycystic ovary syndrome (PCOS): A review. Life Sci. 2020;259:118174. doi: 10.1016/j.lfs.2020.118174.

Anand S, Cheresh DA. Emerging Role of Micro-RNAs in the Regulation of Angiogenesis. Genes Cancer. 2011;2(12):1134-8. doi: 10.1177/1947601911423032.

Andrei D, Nagy RA, van Montfoort A, Tietge U, Terpstra M, Kok K, van den Berg A, Hoek A, Kluiver J, Donker R. Differential miRNA Expression Profiles in Cumulus and Mural Granulosa Cells from Human Pre-ovulatory Follicles. Microrna. 2019;8(1):61-67. doi: 10.2174/2211536607666180912152618.

Baddela VS, Onteru SK, Singh D. A syntenic locus on buffalo chromosome 20: novel genomic hotspot for miRNAs involved in follicular-luteal transition. Funct Integr Genomics. 2017;17(2-3):321-334. doi: 10.1007/s10142-016-0535-7.

Bahmyari S, Jamali Z, Khatami SH, Vakili O, Roozitalab M, Savardashtaki A, Solati A, Mousavi P, Shabaninejad Z, Vakili S, Behrouj H, Ghasemi H, Movahedpour A. microRNAs in female infertility: An overview. Cell Biochem Funct. 2021;39(8):955-969. doi: 10.1002/cbf.3671.

Barranco I, Salas-Huetos A, Berlanga A, Spinaci M, Yeste M, Ribas-Maynou J. Involvement of extracellular vesicle-encapsulated miRNAs in human reproductive disorders: a systematic review. Reprod Fertil Dev. 2022;34(11):751-775. doi: 10.1071/RD21301.

Berardi E, Pues M, Thorrez L, Sampaolesi M. miRNAs in ESC differentiation. Am J Physiol Heart Circ Physiol. 2012;303(8):H931-9. doi: 10.1152/ajpheart.00338.2012.

Bidarimath M, Khalaj K, Wessels JM, Tayade C. MicroRNAs, immune cells and pregnancy. Cell Mol Immunol. 2014;11(6):538-47. doi: 10.1038/cmi.2014.45.

Bonauer A, Dimmeler S. The microRNA-17-92 cluster: still a miRacle? Cell Cycle. 2009;8(23):3866-73. doi: 10.4161/cc.8.23.9994.

Bridi A, Perecin F, Silveira JCD. Extracellular Vesicles Mediated Early Embryo-Maternal Interactions. Int J Mol Sci. 2020;21(3):1163. doi: 10.3390/ijms21031163.

Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF 3rd, Petraglia F. Inflammation and pregnancy. Reprod Sci. 2009;16(2):206-15. doi: 10.1177/1933719108329095.

Chan HW, Lappas M, Yee SW, Vaswani K, Mitchell MD, Rice GE. The expression of the let-7 miRNAs and Lin28 signalling pathway in human term gestational tissues. Placenta. 2013;34(5):443-8. doi: 10.1016/j.placenta.2013.02.008.

Chauhan N, Dhasmana A, Jaggi M, Chauhan SC, Yallapu MM. miR-205: A Potential Biomedicine for Cancer Therapy. Cells. 2020;9(9):1957. doi: 10.3390/cells9091957.

Chen C, Zhang Z, Gu X, Sheng X, Xiao L, Wang X. Exosomes: New regulators of reproductive development. Mater Today Bio. 2023;19:100608. doi: 10.1016/j.mtbio.2023.100608.

Colleoni F, Padmanabhan N, Yung HW, Watson ED, Cetin I, Tissot van Patot MC, Burton GJ, Murray AJ. Suppression of mitochondrial electron transport chain function in the hypoxic human placenta: a role for miRNA-210 and protein synthesis inhibition. PLoS One. 2013;8(1):e55194. doi: 10.1371/journal.pone.0055194.

De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development. 2008;135(23):3911-21. doi: 10.1242/dev.025080.

Donadeu FX, Schauer SN, Sontakke SD. Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol. 2012;215(3):323-34. doi: 10.1530/JOE-12-0252.

Donadeu FX, Schauer SN. Differential miRNA expression between equine ovulatory and anovulatory follicles. Domest Anim Endocrinol. 2013;45(3):122-5. doi: 10.1016/j.domaniend.2013.06.006.

Fatima A, Morris DG. MicroRNAs in domestic livestock. Physiol Genomics. 2013;45(16):685-96. doi: 10.1152/physiolgenomics.00009.2013.

Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond). 2020;134(8):1001-1025. doi: 10.1042/CS20200023.

Gao H, Wen H, Cao C, Dong D, Yang C, Xie S, Zhang J, Huang X, Huang X, Yuan S, Dong W. Overexpression of MicroRNA-10a in Germ Cells Causes Male Infertility by Targeting Rad51 in Mouse and Human. Front Physiol. 2019;10:765. doi: 10.3389/fphys.2019.00765.

Gao K, Wang P, Peng J, Xue J, Chen K, Song Y, Wang J, Li G, An X, Cao B. Regulation and function of runt-related transcription factors (RUNX1 and RUNX2) in goat granulosa cells. J Steroid Biochem Mol Biol. 2018;181:98-108. doi: 10.1016/j.jsbmb.2018.04.002.

Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006;312(5770):75-9. doi: 10.1126/science.1122689.

Gu Y, Sun J, Groome LJ, Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab. 2013;304(8):E836-43. doi: 10.1152/ajpendo.00660.2012.

Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509-24. doi: 10.1038/nrm3838.

Hadjimichael C, Nikolaou C, Papamatheakis J, Kretsovali A. MicroRNAs for Fine-Tuning of Mouse Embryonic Stem Cell Fate Decision through Regulation of TGF-β Signaling. Stem Cell Reports. 2016;6(3):292-301. doi: 10.1016/j.stemcr.2016.01.004.

Hayder HY. The role of miR-218-5p and miR-210-3p in human trophoblast function and placenta development., PhD Dissertation. York University, Toronto, Ontario. 2022.

He Z, Jiang J, Kokkinaki M, Tang L, Zeng W, Gallicano I, Dobrinski I, Dym M. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1. Stem Cells. 2013;31(10):2205-17. doi: 10.1002/stem.1474.

Hemmatzadeh M, Shomali N, Yousefzadeh Y, Mohammadi H, Ghasemzadeh A, Yousefi M. MicroRNAs: Small molecules with a large impact on pre-eclampsia. J Cell Physiol. 2020;235(4):3235-3248. doi: 10.1002/jcp.29286.

Heydari H, Ghiasi R, Hamidian G, Ghaderpour S, Keyhanmanesh R. Voluntary exercise improves sperm parameters in high fat diet receiving rats through alteration in testicular oxidative stress, mir-34a/SIRT1/p53 and apoptosis. Horm Mol Biol Clin Investig. 2021;42(3):253-263. doi: 10.1515/hmbci-2020-0085.

Higashijima A, Miura K, Mishima H, Kinoshita A, Jo O, Abe S, Hasegawa Y, Miura S, Yamasaki K, Yoshida A, Yoshiura K, Masuzaki H. Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat Diagn. 2013;33(3):214-22. doi: 10.1002/pd.4045.

Hu SJ, Ren G, Liu JL, Zhao ZA, Yu YS, Su RW, Ma XH, Ni H, Lei W, Yang ZM. MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem. 2008;283(34):23473-84. doi: 10.1074/jbc.M800406200.

Inoue Y, Munakata Y, Shinozawa A, Kawahara-Miki R, Shirasuna K, Iwata H. Prediction of major microRNAs in follicular fluid regulating porcine oocyte development. J Assist Reprod Genet. 2020;37(10):2569-2579. doi: 10.1007/s10815-020-01909-0.

Ioannidis J, Donadeu FX. Circulating miRNA signatures of early pregnancy in cattle. BMC Genomics. 2016;17:184. doi: 10.1186/s12864-016-2529-1.

Jain N, Gupta P, Sahoo S, Mallick B. Non-coding RNAs and their cross-talks impacting reproductive health of women. Wiley Interdiscip Rev RNA. 2022;13(3):e1695. doi: 10.1002/wrna.1695.

Kamkina P. Genetic and molecular characterization of new genes which influence germline apoptosis in C. elegans. Ph.D. Dissertation, University of Zurich. 2018.

Kathirvel P, Ramesh KG, Sankaranarayanan K. A computational prediction of conserved microRNA targets of ion channels in vertebrates. Current Bioinformatics. 2013;8(1):93-111.

Krichevsky AM, Sonntag KC, Isacson O, Kosik KS. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells. 2006;24(4):857-64. doi: 10.1634/stemcells.2005-0441.

Kropp J, Khatib H. Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J Dairy Sci. 2015;98(9):6552-63. doi: 10.3168/jds.2015-9510.

Kumar P, Luo Y, Tudela C, Alexander JM, Mendelson CR. The c-Myc-regulated microRNA-17~92 (miR-17~92) and miR-106a~363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation. Mol Cell Biol. 2013;33(9):1782-96. doi: 10.1128/MCB.01228-12.

Li Y, Zhang J, Wei W, Wang Z, Prinz M, Hou Y. A strategy for co-analysis of microRNAs and DNA. Forensic Sci Int Genet. 2014;12:24-9. doi: 10.1016/j.fsigen.2014.04.011.

Liu A, Jin M, Xie L, Jing M, Zhou Y, Tang M, Lin T, Wang D. Loss of miR-29a impairs decidualization of endometrial stromal cells by TET3 mediated demethylation of Col1A1 promoter. iScience. 2021;24(9):103065. doi: 10.1016/j.isci.2021.103065.

Liu L, Wang Y, Fan H, Zhao X, Liu D, Hu Y, Kidd AR 3rd, Bao J, Hou Y. MicroRNA-181a regulates local immune balance by inhibiting proliferation and immunosuppressive properties of mesenchymal stem cells. Stem Cells. 2012;30(8):1756-70. doi: 10.1002/stem.1156.

Liu X, Zhan Z, Xu L, Ma F, Li D, Guo Z, Li N, Cao X. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. J Immunol. 2010;185(12):7244-51. doi: 10.4049/jimmunol.1001573.

Liu Y, Ding Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction. 2017;154(4):R123-R131. doi: 10.1530/REP-17-0161.

Ma T, Jiang H, Gao Y, Zhao Y, Dai L, Xiong Q, Xu Y, Zhao Z, Zhang J. Microarray analysis of differentially expressed microRNAs in non-regressed and regressed bovine corpus luteum tissue; microRNA-378 may suppress luteal cell apoptosis by targeting the interferon gamma receptor 1 gene. J Appl Genet. 2011;52(4):481-6. doi: 10.1007/s13353-011-0055-z.

Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 2007;27(3):435-48. doi: 10.1016/j.molcel.2007.07.015.

Mouillet JF, Chu T, Hubel CA, Nelson DM, Parks WT, Sadovsky Y. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta. 2010;31(9):781-4. doi: 10.1016/j.placenta.2010.07.001.

O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;9:402. doi: 10.3389/fendo.2018.00402.

Ospina-Prieto S, Chaiwangyen W, Herrmann J, Groten T, Schleussner E, Markert UR, Morales-Prieto DM. MicroRNA-141 is upregulated in preeclamptic placentae and regulates trophoblast invasion and intercellular communication. Transl Res. 2016;172:61-72. doi: 10.1016/j.trsl.2016.02.012.

Papaioannou MD, Nef S. microRNAs in the testis: building up male fertility. J Androl. 2010;31(1):26-33. doi: 10.2164/jandrol.109.008128.

Papaioannou MD, Pitetti JL, Ro S, Park C, Aubry F, Schaad O, Vejnar CE, Kühne F, Descombes P, Zdobnov EM, McManus MT, Guillou F, Harfe BD, Yan W, Jégou B, Nef S. Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol. 2009 326(1):250-9. doi: 10.1016/j.ydbio.2008.11.011.

Rashmi, Sah S, Shyam S, Singh MK, Palta P. Treatment of buffalo (Bubalus bubalis) SCNT embryos with microRNA-21 mimic improves their quality and alters gene expression but does not affect their developmental competence. Theriogenology. 2019 126:8-16. doi: 10.1016/j.theriogenology.2018.11.025.

Ren W, Qiang C, Gao L, Li SM, Zhang LM, Wang XL, Dong JW, Chen C, Liu CY, Zhi KQ. Circulating microRNA-21 (MIR-21) and phosphatase and tensin homolog (PTEN) are promising novel biomarkers for detection of oral squamous cell carcinoma. Biomarkers. 2014;19(7):590-6. doi: 10.3109/1354750X.2014.955059.

Reza AMMT, Choi YJ, Han SG, Song H, Park C, Hong K, Kim JH. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev Camb Philos Soc. 2019;94(2):415-438. doi: 10.1111/brv.12459.

Richard AJ, White U, Elks CM, Stephens JM et al., Adipose tissue: physiology to metabolic dysfunction. Endotext. 2020. PMID: 32255578.

Sharma N, Baruah MM. The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol. 2019;21(2):126-144. doi: 10.1007/s12094-018-1910-8.

Singh S, Shyam S, Sah S, Singh MK, Palta P. Treatment of buffalo (Bubalus bubalis) somatic cell nuclear transfer embryos with microRNA-29b mimic improves their quality, reduces DNA methylation, and changes gene expression without affecting their developmental competence. Cell Reprogram. 2019;21(4):210-219. doi: 10.1089/cell.2019.0007.

Sinha PB, Tesfaye D, Rings F, Hossien M, Hoelker M, Held E, Neuhoff C, Tholen E, Schellander K, Salilew-Wondim D. MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation. J Ovarian Res. 2017;10(1):37. doi: 10.1186/s13048-017-0336-1.

Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol. 2008;15(3):259-67. doi: 10.1038/nsmb.1391.

Stowe HM, Curry E, Calcatera SM, Krisher RL, Paczkowski M, Pratt SL. Cloning and expression of porcine Dicer and the impact of developmental stage and culture conditions on MicroRNA expression in porcine embryos. Gene. 2012;501(2):198-205. doi: 10.1016/j.gene.2012.03.058.

Tan K, Wang X, Zhang Z, Miao K, Yu Y, An L, Tian J. Downregulation of miR-199a-5p Disrupts the Developmental Potential of In Vitro-Fertilized Mouse Blastocysts. Biol Reprod. 2016;95(3):54. doi: 10.1095/biolreprod.116.141051.

Tang Q, Wu W, Xu X, Huang L, Gao Q, Chen H, Sun H, Xia Y, Sha J, Wang X, Chen D, Xu Q. miR-141 contributes to fetal growth restriction by regulating PLAG1 expression. PLoS One. 2013;8(3):e58737. doi: 10.1371/journal.pone.0058737.

Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, Hoelker M. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev. 2009;76(7):665-77. doi: 10.1002/mrd.21005.

Thorne JL, Battaglia S, Baxter DE, Hayes JL, Hutchinson SA, Jana S, Millican-Slater RA, Smith L, Teske MC, Wastall LM, Hughes TA. MiR-19b non-canonical binding is directed by HuR and confers chemosensitivity through regulation of P-glycoprotein in breast cancer. Biochim Biophys Acta Gene Regul Mech. 2018;1861(11):996-1006. doi: 10.1016/j.bbagrm.2018.08.005.

Timofeeva AV, Fedorov IS, Brzhozovskiy AG, Bugrova AE, Chagovets VV, Volochaeva MV, Starodubtseva NL, Frankevich VE, Nikolaev EN, Shmakov RG, Sukhikh GT. miRNAs and Their Gene Targets-A Clue to Differentiate Pregnancies with Small for Gestational Age Newborns, Intrauterine Growth Restriction, and Preeclampsia. Diagnostics (Basel). 2021;11(4):729. doi: 10.3390/diagnostics11040729.

Torley KJ, da Silveira JC, Smith P, Anthony RV, Veeramachaneni DN, Winger QA, Bouma GJ. Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reprod Biol Endocrinol. 2011;9:2. doi: 10.1186/1477-7827-9-2.

Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 2006;580(17):4214-7. doi: 10.1016/j.febslet.2006.06.080.

Vasiljevic A. Histopathology and molecular pathology of pediatric pineal parenchymal tumors. Childs Nerv Syst. 2022. doi: 10.1007/s00381-022-05637-x.

Vidigal JA, Ventura A. Embryonic stem cell miRNAs and their roles in development and disease. Semin Cancer Biol. 2012;22(5-6):428-36. doi: 10.1016/j.semcancer.2012.04.009.

Viswanathan SR, Mermel CH, Lu J, Lu CW, Golub TR, Daley GQ. microRNA expression during trophectoderm specification. PLoS One. 2009;4(7):e6143. doi: 10.1371/journal.pone.0006143.

Wanet A, Tacheny A, Arnould T, Renard P. miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res. 2012;40(11):4742-53. doi: 10.1093/nar/gks151.

Wang XY, Chen XL, Huang ZQ, Chen DW, Yu B, He J, Luo JQ, Luo YH, Chen H, Zheng P, Yu J. MicroRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression. Animal. 2017;11(12):2268-2274. doi: 10.1017/S1751731117001008.

Wang Y, Lumbers ER, Arthurs AL, Corbisier de Meaultsart C, Mathe A, Avery-Kiejda KA, Roberts CT, Pipkin FB, Marques FZ, Morris BJ, Pringle KG. Regulation of the human placental (pro)renin receptor-prorenin-angiotensin system by microRNAs. Mol Hum Reprod. 2018;24(9):453-464. doi: 10.1093/molehr/gay031.

Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng H, Mastick GS, Xu C, Yan W. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci U S A. 2014 111(28):E2851-7. doi: 10.1073/pnas.1407777111.

Xie L, Mouillet JF, Chu T, Parks WT, Sadovsky E, Knöfler M, Sadovsky Y. C19MC microRNAs regulate the migration of human trophoblasts. Endocrinology. 2014;155(12):4975-85. doi: 10.1210/en.2014-1501.

Xu J, Feng L, Han Z, Li Y, Wu A, Shao T, Ding N, Li L, Deng W, Di X, Wang J, Zhang L, Li X, Zhang K, Cheng S. Extensive ceRNA-ceRNA interaction networks mediated by miRNAs regulate development in multiple rhesus tissues. Nucleic Acids Res. 2016;44(19):9438-9451. doi: 10.1093/nar/gkw587.

Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A. 2008;105(36):13421-6. doi: 10.1073/pnas.0801613105.

Yan T, Cui K, Huang X, Ding S, Zheng Y, Luo Q, Liu X, Zou L. Assessment of therapeutic efficacy of miR-126 with contrast-enhanced ultrasound in preeclampsia rats. Placenta. 2014;35(1):23-9. doi: 10.1016/j.placenta.2013.10.017.

Yang S, Wang S, Luo A, Ding T, Lai Z, Shen W, Ma X, Cao C, Shi L, Jiang J, Rong F, Ma L, Tian Y, Du X, Lu Y, Li Y, Wang S. Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol Reprod. 2013;89(5):126. doi: 10.1095/biolreprod.113.107730.

Yao C, Sun M, Yuan Q, Niu M, Chen Z, Hou J, Wang H, Wen L, Liu Y, Li Z, He Z. MiRNA-133b promotes the proliferation of human Sertoli cells through targeting GLI3. Oncotarget. 2016;7(3):2201-19. doi: 10.18632/oncotarget.6876.

Yuan S, Tang C, Zhang Y, Wu J, Bao J, Zheng H, Xu C, Yan W. mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol Open. 2015;4(2):212-23. doi: 10.1242/bio.201410959.

Zhang C, Long X, Ding Y, Chen X, He J, Liu S, Geng Y, Wang Y, Liu X. Expression of DROSHA in the Uterus of Mice in Early Pregnancy and Its Potential Significance During Embryo Implantation. Reprod Sci. 2016;23(2):154-62. doi: 10.1177/1933719115584444.

Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007 Apr 20;129(2):303-17. doi: 10.1016/j.cell.2007.03.030.

Zhou R, Wu J, Liu B, Jiang Y, Chen W, Li J, He Q, He Z. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell Mol Life Sci. 2019;76(14):2681-2695. doi: 10.1007/s00018-019-03101-9

Downloads

Published

2023-05-15

How to Cite

Shavi, Saini, S., Gupta, T., Selokar, N.L., & Singh, M.K. (2023). Role of MicroRNAs in Mammalian Reproduction. Animal Reproduction Update , 3(2), 33–42. https://doi.org/10.48165/aru.2023.3.2.4