Genome Engineering in Livestock: Recent Advances and Regulatory Framework

Authors

  • Dharmendra Kumar Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
  • Wilfried A. Kues Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Institute of Farm Animal Genetics, Depart ment of Biotechnology, Stem Cell Physiology, Höltystr 10, 31535 Neustadt, Germany

DOI:

https://doi.org/10.48165/aru.2023.3.1.5

Keywords:

Genome editing, CRISPR/Cas9, livestock, regulation, transgenesis

Abstract

Since the domestication of animals, livestock species are an important source of protein-rich food, and other animal products. The very recent progress in genetic engineering allows to modify the genomes of livestock species in an unprecedented way to improve productions traits, disease resistance, adaptation to climate changes, animal welfare aspects, but also to develop large animal models for developmental biology and biomedicine. Here, we concisely summarize the recent progress of genome-editing technologies, with a particular focus on the CRISPR/Cas9 designer nuclease, in livestock. Currently, precision-modified livestock lines with disease resistance and production traits are ready to be introduced into the commercial production. On a scientific basis these lines are considered safe for human consumption, especially for genome edits implementing only a single nucleotide change, which mimic ´natural´ point mutations. Internationally, however, there are clear differences in the interpretation of the legal framework on whether genome edited animals or their products need to be regulated.

References

Amare BA, Ayalew A. Animal transgenesis technology: A review. Cogent. Food & Agriculture, 2019; 5:1. doi: 10.1080/23311932.2019.1686802.

Araki M, Nojima K, Ishii T. Caution required for handling genome editing technology. Trends Biotechnol. 2014;32(5):234-7. doi: 10.1016/j.tibtech.2014.03.005.

Ayanoğlu FB, Elçin AE, Elçin YM. Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk J Biol. 2020;44(2):110-120. doi: 10.3906/biy-1912-52.

Bachiller D, Schellander K, Peli J, Rüther U. Liposome-mediated DNA uptake by sperm cells. Mol Reprod Dev. 1991;30(3):194-200. doi: 10.1002/mrd.1080300305.

Bai DP, Yang MM, Qu L, Chen YL. Generation of a transgenic cashmere goat using the piggyBac transposition system. Theriogenology. 2017;93:1-6. doi: 10.1016/j.theriogenology.2017.01.036.

Bauer DE, Canver MC, Orkin SH. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J Vis Exp. 2015;(95):e52118. doi: 10.3791/52118.

Bishop TF, Van Eenennaam AL. Genome editing approaches to augment livestock breeding programs. J Exp Biol. 2020;223(Pt Suppl 1):jeb207159. doi: 10.1242/jeb.207159.

Boel A, De Saffel H, Steyaert W, Callewaert B, De Paepe A, Coucke PJ, Willaert A. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Dis Model Mech. 2018;11(10):dmm035352. doi: 10.1242/dmm.035352.

Bollen, Y.; Post, J.; Koo, B.K.; Snippert, H.J.G. How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Res. 2018,46(13),6435-6454.

Bosch P, Forcato DO, Alustiza FE, Alessio AP, Fili AE, Olmos Nicotra MF, Liaudat AC, Rodríguez N, Talluri TR, Kues WA. Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals. Cell Mol Life Sci. 2015;72(10):1907-29. doi: 10.1007/s00018-015-1842-1.

Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CB, Archibald AL. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog. 2017;13(2):e1006206. doi: 10.1371/journal.ppat.1006206.

Caplan AL, Parent B, Shen M, Plunkett C. No time to waste--the ethical challenges created by CRISPR: CRISPR/Cas, being an efficient, simple, and cheap technology to edit the genome of any organism, raises many ethical and regulatory issues beyond the use to manipulate human germ line cells. EMBO Rep. 2015;16(11):1421-6. doi: 10.15252/embr.201541337.

Carey K, Ryu J, Uh K, Lengi AJ, Clark-Deener S, Corl BA, Lee K. Frequency of off-targeting in genome edited pigs produced via direct injection of the CRISPR/Cas9 system into developing embryos. BMC Biotechnol. 2019;19(1):25. doi: 10.1186/s12896-019-0517-7.

Carlson DF, Garbe JR, Tan W, Martin MJ, Dobrinsky JR, Hackett PB, Clark KJ, Fahrenkrug SC. Strategies for selection marker-free swine transgenesis using the Sleeping Beauty transposon system. Transgenic Res. 2011;20(5):1125-37. doi: 10.1007/s11248-010-9481-7.

Chen F, Pruett-Miller SM, Davis GD. Gene editing using ssODNs with engineered endonucleases. Methods Mol Biol. 2015;1239:251-65. doi: 10.1007/978-1-4939-1862-1_14.

Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods. 2011;8(9):753-5. doi: 10.1038/nmeth.1653.

Chen J, Wang H, Bai J, Liu W, Liu X, Yu D, Feng T, Sun Z, Zhang L, Ma L, Hu Y, Zou Y, Tan T, Zhong J, Hu M, Bai X, Pan D, Xing Y, Zhao Y, Tian K, Hu X, Li N. Generation of Pigs Resistant to Highly Pathogenic-Porcine Reproductive and Respiratory Syndrome Virus through Gene Editing of CD163. Int J Biol Sci. 2019;15(2):481-492. doi: 10.7150/ijbs.25862.

Clark KJ, Carlson DF, Leaver MJ, Foster LK, Fahrenkrug SC. Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells. Nucleic Acids Res. 2009;37(4):1239-47. doi: 10.1093/nar/gkn1025.

Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I, Menchaca A. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes. PLoS One. 2015;10(8):e0136690. doi: 10.1371/journal.pone.0136690.

Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 2002;20(3):251-5. doi: 10.1038/nbt0302-251.

de Graeff N, Jongsma KR, Johnston J, Hartley S, Bredenoord AL. The ethics of genome editing in non-human animals: a systematic review of reasons reported in the academic literature. Philos Trans R Soc Lond B Biol Sci. 2019 374(1772):20180106. doi: 10.1098/rstb.2018.0106.

Deng S, Li G, Yu K, Tian X, Wang F, Li W, Jiang W, Ji P, Han H, Fu J, Zhang X, Zhang J, Liu Y, Lian Z, Liu G. RNAi combining Sleeping Beauty transposon system inhibits ex vivo expression of foot-and-mouth disease virus VP1 in transgenic sheep cells. Sci Rep. 2017;7(1):10065. doi: 10.1038/s41598-017-09302-1.

Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, King T, Ritchie M, Ritchie WA, Rollo M, de Sousa P, Travers A, Wilmut I, Clark AJ. Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat Biotechnol. 2001;19(6):559-62. doi: 10.1038/89313.

Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184-191. doi: 10.1038/nbt.3437.

Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. doi: 10.1126/science.1258096.

Dua S, Bajwa KK, Prashar A, Bansal S, Beniwal M, Kumar P, Punetha M, Selokar NL, Yadav PS, Kumar D. Empowering of reproductive health of farm animals through genome editing technology. J Reprod Healthc Med. 2021; 2:4.

Eaton SL, Proudfoot C, Lillico SG, Skehel P, Kline RA, Hamer K, Rzechorzek NM, Clutton E, Gregson R, King T, O'Neill CA, Cooper JD, Thompson G, Whitelaw CB, Wishart TM. CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease). Sci Rep. 2019;9(1):9891. doi: 10.1038/s41598-019-45859-9.

Eriksson S, Jonas E, Rydhmer L, Röcklinsberg H. Invited review: Breeding and ethical perspectives on genetically modified and genome edited cattle. J Dairy Sci. 2018;101(1):1-17. doi: 10.3168/jds.2017-12962.

FAO. World livestock: Transforming the livestock sector through the sustainable development goals. Rome. 2018; 222.

Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, Cui C, Liu X, Zhang J, Zhang Y. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol. 2017;18(1):13. doi: 10.1186/s13059-016-1144-4.

Garrels W, Ivics Z, Kues WA. Precision genetic engineering in large mammals. Trends Biotechnol. 2012;30(7):386-93. doi: 10.1016/j.tibtech.2012.03.008.

Garrels W, Mátés L, Holler S, Dalda A, Taylor U, Petersen B, Niemann H, Izsvák Z, Ivics Z, Kues WA. Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS One. 2011;6(8):e23573. doi: 10.1371/journal.pone.0023573.

Garrels W, Talluri TR, Apfelbaum R, Carratalá YP, Bosch P, Pötzsch K, Grueso E, Ivics Z, Kues WA. One-step Multiplex Transgenesis via Sleeping Beauty Transposition in Cattle. Sci Rep. 2016;6:21953. doi: 10.1038/srep21953.

Godber OF, Wall R. Livestock and food security: vulnerability to population growth and climate change. Glob Chang Biol. 2014;20(10):3092-102. doi: 10.1111/gcb.12589.

Gün G, Kues WA. Current progress of genetically engineered pig models for biomedical research. Biores Open Access. 2014;3(6):255-64. doi: 10.1089/biores.2014.0039.

Guo R, Wan Y, Xu D, Cui L, Deng M, Zhang G, Jia R, Zhou W, Wang Z, Deng K, Huang M, Wang F, Zhang Y. Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Sci Rep. 2016;6:29855. doi: 10.1038/srep29855.

Hai T, Teng F, Guo R, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 2014;24(3):372-5. doi: 10.1038/cr.2014.11. Epub 2014 Jan 31.

Hamernik DL. Farm animals are important biomedical models. Anim Front. 2019; 9(3):3-5. doi: 10.1093/af/vfz026.

Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL. Production of transgenic rabbits, sheep and pigs by microinjection. Nature. 1985;315(6021):680-3. doi: 10.1038/315680a0.

Han K, Liang L, Li L, Ouyang Z, Zhao B, Wang Q, Liu Z, Zhao Y, Ren X, Jiang F, Lai C, Wang K, Yan S, Huang L, Guo L, Zeng K, Lai L, Fan N. Generation of Hoxc13 knockout pigs recapitulates human ectodermal dysplasia-9. Hum Mol Genet. 2017;26(1):184-191. doi: 10.1093/hmg/ddw378.

He Z, Zhang T, Jiang L, Zhou M, Wu D, Mei J, Cheng Y. Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Biosci Rep. 2018;38(6):BSR20180742. doi: 10.1042/BSR20180742.

Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A. Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep. 2003;4(11):1054-60. doi: 10.1038/sj.embor.embor7400007.

Holm IE, Alstrup AK, Luo Y. Genetically modified pig models for neurodegenerative disorders. J Pathol. 2016;238(2):267-87. doi: 10.1002/path.4654.

Horan R, Powell R, McQuaid S, Gannon F, Houghton JA. Association of foreign DNA with porcine spermatozoa. Arch Androl. 1991;26(2):83-92. doi: 10.3109/01485019108987631.

Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-1278. doi: 10.1016/j.cell.2014.05.010.

Hu R, Fan ZY, Wang BY, Deng SL, Zhang XS, Zhang JL, Han HB, Lian ZX. Generation of FGF5 knockout sheep via the CRISPR/Cas9 system. J Anim Sci. 2017;95(5):2019-2024. doi: 10.2527/jas.2017.1503.

Huang L, Hua Z, Xiao H, Cheng Y, Xu K, Gao Q, Xia Y, Liu Y, Zhang X, Zheng X, Mu Y, Li K. CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels. Oncotarget. 2017;8(23):37751-37760. doi: 10.18632/oncotarget.17154.

Hundleby PAC, Harwood WA. Impacts of the EU GMO regulatory framework for plant genome editing. Food Energy Secur. 2019;8(2):e00161. doi: 10.1002/fes3.161.

Ikeda M, Matsuyama S, Akagi S, Ohkoshi K, Nakamura S, Minabe S, Kimura K, Hosoe M. Correction of a Disease Mutation using CRISPR/Cas9-assisted Genome Editing in Japanese Black Cattle. Sci Rep. 2017 Dec 19;7(1):17827. doi: 10.1038/s41598-017-17968-w.

Ishii T. Genome-edited livestock: ethics and social acceptance. Anim Front 2017; 7: 24–32.

Ishino T, Hashimoto M, Amagasa M, Saito N, Dochi O, Kirisawa R, Kitamura H. Establishment of protocol for preparation of gene-edited bovine ear-derived fibroblasts for somatic cell nuclear transplantation. Biomed Res. 2018;39(2):95-104. doi: 10.2220/biomedres.39.95.

Ivancevic AM, Walsh AM, Kortschak RD, Adelson DL. Jumping the fine LINE between species: horizontal transfer of transposable elements in animals catalyses genome evolution. Bioessays. 2013;35(12):1071-82. doi: 10.1002/bies.201300072.

Ivics Z, Garrels W, Mátés L, Yau TY, Bashir S, Zidek V, Landa V, Geurts A, Pravenec M, Rülicke T, Kues WA, Izsvák Z. Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nat Protoc. 2014;9(4):810-27. doi: 10.1038/nprot.2014.010.

Ivics Z, Li MA, Mátés L, Boeke JD, Nagy A, Bradley A, Izsvák Z. Transposon-mediated genome manipulation in vertebrates. Nat Methods. 2009;6(6):415-22. doi: 10.1038/nmeth.1332.

Jakobsen JE, Johansen MG, Schmidt M, Dagnæs-Hansen F, Dam K, Gunnarsson A, Liu Y, Kragh PM, Li R, Holm IE, Callesen H, Mikkelsen JG, Nielsen AL, Jørgensen AL. Generation of minipigs with targeted transgene insertion by recombinase-mediated cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT). Transgenic Res. 2013;22(4):709-23. doi: 10.1007/s11248-012-9671-6.

Kalds P, Gao Y, Zhou S, Cai B, Huang X, Wang X, Chen Y. Redesigning small ruminant genomes with CRISPR toolkit: Overview and perspectives. Theriogenology. 2020;147:25-33. doi: 10.1016/j.theriogenology.2020.02.015.

Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y. Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era. Front Genet. 2019;10:750. doi: 10.3389/fgene.2019.00750.

Kambadur R, Sharma M, Smith TP, Bass JJ. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997;7(9):910-6. doi: 10.1101/gr.7.9.910.

Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A. 2000;97(21):11403-8. doi: 10.1073/pnas.97.21.11403.

Kawall K, Cotter J, Then C. Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environ. Sci. Eur. 2020; 32:106.

Komor AC, Badran AH, Liu DR. Editing the Genome Without Double-Stranded DNA Breaks. ACS Chem Biol. 2018;13(2):383-388. doi: 10.1021/acschembio.7b00710.

Kues WA, Kumar D, Selokar NL, Talluri TR. Applications of genome editing tools in stem cells towards regenerative medicine: An update. Curr Stem Cell Res Ther. 2022;17(3):267-279. doi: 10.2174/1574888X16666211124095527.

Kues WA, Niemann H. Advances in farm animal transgenesis. Prev Vet Med. 2011 102(2):146-56. doi: 10.1016/j.prevetmed.2011.04.009.

Kumar D, Kues WA. Application of genome editing in farm animals. In: genomics and biotechnological advances in veterinary, poultry, and fisheries. Academic Press 2020, 131-149.

Kumar D, Punetha M, Bansal S, Saini S, Kumar P, Sharma RK, Yadav PS. Double sperm cloning: Could improve the efficiency of animal cloning. Anim Reprod Update. 2022; 2(1):108-14. doi: 10.48165/aru.2022.2107.

Kumar D, Talluri TR, Anand T, Kues WA. Transposon-based reprogramming to induced pluripotency. Histol Histopathol. 2015;30(12):1397-409. doi: 10.14670/HH-11-656.

Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, Knott JG, Duteau A, Goldsby RA, Osborne BA, Ishida I, Robl JM. Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol. 2002;20(9):889-94. doi: 10.1038/nbt727.

Kuznetsov A, Kuznetsova I. The binding of exogenous DNA pRK31acZ by rabbit spermatozoa, its transfer to oocytes and expression in preimplantation embryos. Ontogenez, 1994; 26:300–309.

Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol. 2006;24(4):435-6. doi: 10.1038/nbt1198.

Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 2002;295(5557):1089-92. doi: 10.1126/science.1068228.

Lavitrano M, Camaioni A, Fazio VM, Dolci S, Farace MG, Spadafora C. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell. 1989;57(5):717-23. doi: 10.1016/0092-8674(89)90787-3.

Ledford H. CRISPR, the disruptor. Nature. 2015;522(7554):20-4. doi: 10.1038/522020a.

Lee K, Uh K, Farrell K. Current progress of genome editing in livestock. Theriogenology. 2020;150:229-235. doi: 10.1016/j.theriogenology.2020.01.036.

Li C, Zhou S, Li Y, Li G, Ding Y, Li L, Liu J, Qu L, Sonstegard T, Huang X, Jiang Y, Chen Y, Petersen B, Wang X. Trio-Based Deep Sequencing Reveals a Low Incidence of Off-Target Mutations in the Offspring of Genetically Edited Goats. Front Genet. 2018;9:449. doi: 10.3389/fgene.2018.00449.

Li Z, Duan X, An X, Feng T, Li P, Li L, Liu J, Wu P, Pan D, Du X, Wu S. Efficient RNA-guided base editing for disease modeling in pigs. Cell Discov. 2018;4:64. doi: 10.1038/s41421-018-0065-7.

Li Z, Yang HY, Wang Y, Zhang ML, Liu XR, Xiong Q, Zhang LN, Jin Y, Mou LS, Liu Y, Li RF, Rao Y, Dai YF. Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting. J Biomed Res. 2017;31(5):445-452. doi: 10.7555/JBR.31.20170026.

Liu T, Dou H, Xiang X, Li L, Li Y, Lin L, Pang X, Zhang Y, Chen Y, Luan J, Xu Y, Yang Z, Yang W, Liu H, Li F, Wang H, Yang H, Bolund L, Vajta G, Du Y. Factors Determining the Efficiency of Porcine Somatic Cell Nuclear Transfer: Data Analysis with Over 200,000 Reconstructed Embryos. Cell Reprogram. 2015;17(6):463-71. doi: 10.1089/cell.2015.0037.

Liu X, Liu H, Wang M, Li R, Zeng J, Mo D, Cong P, Liu X, Chen Y, He Z. Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs. Transgenic Res. 2019;28(1):141-150. doi: 10.1007/s11248-018-0107-9.

Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science. 2002;295(5556):868-72. doi: 10.1126/science.1067081.

Manesh SB, Samani RO, Manesh SB. Ethical issues of transplanting organs from transgenic animals into human beings. Cell J. 2014;16 (3): 353-60.

Mátés L, Chuah MK, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, Grzela DP, Schmitt A, Becker K, Matrai J, Ma L, Samara-Kuko E, Gysemans C, Pryputniewicz D, Miskey C, Fletcher B, VandenDriessche T, Ivics Z, Izsvák Z. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 2009;41(6):753-61. doi: 10.1038/ng.343.

McFarlane GR, Salvesen HA, Sternberg A, Lillico SG. On-farm livestock genome editing using cutting edge reproductive technologies. Front Sustain Food Syst. 2019; 3:106.

Menchaca A, Dos Santos-Neto PC, Mulet AP, Crispo M. CRISPR in livestock: From editing to printing. Theriogenology. 2020;150:247-254. doi: 10.1016/j.theriogenology.2020.01.063.

Miskey C, Izsvák Z, Plasterk RH, Ivics Z. The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res. 2003;31(23):6873-81. doi: 10.1093/nar/gkg910.

Mueller ML, Cole JB, Sonstegard TS, Van Eenennaam AL. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. J Dairy Sci. 2019;102(5):4215-4226. doi: 10.3168/jds.2018-15892.

Muñoz-López M, García-Pérez JL. DNA transposons: nature and applications in genomics. Curr Genomics. 2010;11(2):115-28. doi: 10.2174/138920210790886871.

Nabarro D, Wannous C. The potential contribution of Iivestock to food and nutrition security: the application of the One Health approach in livestock policy and practice. Rev Sci Tech. 2014;33(2):475-85. doi: 10.20506/rst.33.2.2292.

Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells. 2020;9(7):1608. doi: 10.3390/cells9071608.

Navarro-Serna S, Vilarino M, Park I, Gadea J, Ross PJ. Livestock Gene Editing by One-step Embryo Manipulation. J Equine Vet Sci. 2020;89:103025. doi: 10.1016/j.jevs.2020.103025.

Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One. 2014;9(9):e106718. doi: 10.1371/journal.pone.0106718.

Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156(4):836-43. doi: 10.1016/j.cell.2014.01.027.

Niu Y, Zhao X, Zhou J, Li Y, Huang Y, Cai B, Liu Y, Ding Q, Zhou S, Zhao J, Zhou G, Ma B, Huang X, Wang X, Chen Y. Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9. Reprod Fertil Dev. 2018;30(2):307-312. doi: 10.1071/RD17068.

Park KE, Frey JF, Waters J, Simpson SG, Coutu C, Plummer S, Campbell M, Donovan DM, Telugu BP. One-Step Homology Mediated CRISPR-Cas Editing in Zygotes for Generating Genome Edited Cattle. CRISPR J. 2020;3(6):523-534. doi: 10.1089/crispr.2020.0047.

Park KE, Kaucher AV, Powell A, Waqas MS, Sandmaier SE, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA, Lillico SG, Whitelaw CB, Mileham A, Telugu BP, Oatley JM. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci Rep. 2017;7:40176. doi: 10.1038/srep40176.

Park KW, Cheong HT, Lai L, Im GS, Kühholzer B, Bonk A, Samuel M, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS. Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. Anim Biotechnol. 2001;12(2):173-81. doi: 10.1081/abio-100108344.

Peng J, Wang Y, Jiang J, Zhou X, Song L, Wang L, Ding C, Qin J, Liu L, Wang W, Liu J, Huang X, Wei H, Zhang P. Production of Human Albumin in Pigs Through CRISPR/Cas9-Mediated Knockin of Human cDNA into Swine Albumin Locus in the Zygotes. Sci Rep. 2015;5:16705. doi: 10.1038/srep16705.

Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet. 2021;11:614688. doi: 10.3389/fgene.2020.614688.

Perota A, Lagutina I, Duchi R, Zanfrini E, Lazzari G, Judor JP, Conchon S, Bach JM, Bottio T, Gerosa G, Costa C, Galiñanes M, Roussel JC, Padler-Karavani V, Cozzi E, Soulillou JP, Galli C. Generation of cattle knockout for galactose-α1,3-galactose and N-glycolylneuraminic acid antigens. Xenotransplantation. 2019;26(5):e12524. doi: 10.1111/xen.12524.

Petersen B. Basics of genome editing technology and its application in livestock species. Reprod Domest Anim. 2017;52 Suppl 3:4-13. doi: 10.1111/rda.13012.

Pfeifer A, Hofmann A. Lentiviral transgenesis. Methods Mol Biol. 2009;530:391-405. doi: 10.1007/978-1-59745-471-1_21.

Pfeifer A, Ikawa M, Dayn Y, Verma IM. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci U S A. 2002;99(4):2140-5. doi: 10.1073/pnas.251682798.

Raman R. The impact of Genetically Modified (GM) crops in modern agriculture: A review. GM Crops Food. 2017;8(4):195-208. doi: 10.1080/21645698.2017.1413522.

Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34(3):339-44. doi: 10.1038/nbt.3481.

Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr, Zabner J, Prather RS, Welsh MJ. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science. 2008;321(5897):1837-41. doi: 10.1126/science.1163600.

Rottmann O, Antes R, Höfer P, Maierhofer G. Liposome mediated gene transfer via spermatozoa into avian egg cells. J Anim Breed Genet. 1992; 109: 64-70.

Ruan J, Li H, Xu K, Wu T, Wei J, Zhou R, Liu Z, Mu Y, Yang S, Ouyang H, Chen-Tsai RY, Li K. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep. 2015;5:14253. doi: 10.1038/srep14253.

Schellander K, Peli J, Schmoll F, Brem G. Artificial insemination in cattle with DNA‐treated sperm. Anim Biotechnol. 1995; 6: 41-50.

Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science. 1997;278(5346):2130-3. doi: 10.1126/science.278.5346.2130.

Schook LB, Rund L, Begnini KR, Remião MH, Seixas FK, Collares T. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models. Front Genet. 2016;7:28. doi: 10.3389/fgene.2016.00028.

Schultz-Bergin MIs. CRISPR an ethical game changer. J Agric Environ Ethics. 2018;31:219.

Selokar NL, Kues WA. How farm animals are improving human health and welfare. Rev Sci Tech. 2018;37(1):83-96. doi: 10.20506/rst.37.1.2742.

Shinohara ET, Kaminski JM, Segal DJ, Pelczar P, Kolhe R, Ryan T, Coates CJ, Fraser MJ, Handler AM, Yanagimachi R, Moisyadi S. Active integration: new strategies for transgenesis. Transgenic Res. 2007;16(3):333-9. doi: 10.1007/s11248-007-9077-z.

Smith K, Spadafora C. Sperm-mediated gene transfer: applications and implications. Bioessays. 2005;27(5):551-62. doi: 10.1002/bies.20211.

Sperandio S, Lulli V, Bacci ML, Forni M, Maione B, Spadafora C, Lavitrano M. Sperm‐mediated DNA transfer in bovine and swine species. Anim Biotechnol. 1996; 7(1): 59-77.

Tanihara F, Hirata M, Nguyen NT, Le QA, Hirano T, Takemoto T, Nakai M, Fuchimoto DI, Otoi T. Generation of a TP53-modified porcine cancer model by CRISPR/Cas9-mediated gene modification in porcine zygotes via electroporation. PLoS One. 2018;13(10):e0206360. doi: 10.1371/journal.pone.0206360.

Tanihara F, Takemoto T, Kitagawa E, Rao S, Do LT, Onishi A, Yamashita Y, Kosugi C, Suzuki H, Sembon S, Suzuki S, Nakai M, Hashimoto M, Yasue A, Matsuhisa M, Noji S, Fujimura T, Fuchimoto D, Otoi T. Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv. 2016;2(9):e1600803. doi: 10.1126/sciadv.1600803.

Tuggle CK, Waters WR. Tuberculosis-resistant transgenic cattle. Proc Natl Acad Sci U S A. 2015;112(13):3854-5. doi: 10.1073/pnas.1502972112.

Urnov FD. Genome Editing B.C. (Before CRISPR): Lasting Lessons from the "Old Testament". CRISPR J. 2018;1(1):34-46. doi: 10.1089/crispr.2018.29007.fyu.

Van Eenennaam AL. Application of genome editing in farm animals: cattle. Transgenic Res. 2019;28(Suppl 2):93-100. doi: 10.1007/s11248-019-00141-6.

Walsh AM, Kortschak RD, Gardner MG, Bertozzi T, Adelson DL. Widespread horizontal transfer of retrotransposons. Proc Natl Acad Sci U S A. 2013;110(3):1012-6. doi: 10.1073/pnas.1205856110.

Wang X, Cao C, Huang J, Yao J, Hai T, Zheng Q, Wang X, Zhang H, Qin G, Cheng J, Wang Y, Yuan Z, Zhou Q, Wang H, Zhao J. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep. 2016;6:20620. doi: 10.1038/srep20620.

Wang X, Niu Y, Zhou J, Yu H, Kou Q, Lei A, Zhao X, Yan H, Cai B, Shen Q, Zhou S, Zhu H, Zhou G, Niu W, Hua J, Jiang Y, Huang X, Ma B, Chen Y. Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci Rep. 2016;6:32271. doi: 10.1038/srep32271.

Wang Y, Du Y, Shen B, Zhou X, Li J, Liu Y, Wang J, Zhou J, Hu B, Kang N, Gao J, Yu L, Huang X, Wei H. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep. 2015;5:8256. doi: 10.1038/srep08256.

Wells KD, Bardot R, Whitworth KM, Trible BR, Fang Y, Mileham A, Kerrigan MA, Samuel MS, Prather RS, Rowland RRR. Replacement of Porcine CD163 Scavenger Receptor Cysteine-Rich Domain 5 with a CD163-Like Homolog Confers Resistance of Pigs to Genotype 1 but Not Genotype 2 Porcine Reproductive and Respiratory Syndrome Virus. J Virol. 2017;91(2):e01521-16. doi: 10.1128/JVI.01521-16.

Whelan AI, Lema MA. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food. 2015;6(4):253-65. doi: 10.1080/21645698.2015.1114698.

Whitelaw CB, Lillico SG, King T. Production of transgenic farm animals by viral vector-mediated gene transfer. Reprod Domest Anim. 2008;43 Suppl 2:355-8. doi: 10.1111/j.1439-0531.2008.01184.x.

Whitelaw CB, Sheets TP, Lillico SG, Telugu BP. Engineering large animal models of human disease. J Pathol. 2016;238(2):247-56. doi: 10.1002/path.4648.

Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O'Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod. 2014;91(3):78. doi: 10.1095/biolreprod.114.121723.

Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol. 2016;34(1):20-2. doi: 10.1038/nbt.3434.

Whitworth KM, Rowland RRR, Petrovan V, Sheahan M, Cino-Ozuna AG, Fang Y, Hesse R, Mileham A, Samuel MS, Wells KD, Prather RS. Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res. 2019;28(1):21-32. doi: 10.1007/s11248-018-0100-3.

Williams DK, Pinzón C, Huggins S, Pryor JH, Falck A, Herman F, Oldeschulte J, Chavez MB, Foster BL, White SH, Westhusin ME, Suva LJ, Long CR, Gaddy D. Genetic engineering a large animal model of human hypophosphatasia in sheep. Sci Rep. 2018;8(1):16945. doi: 10.1038/s41598-018-35079-y.

Xie J, Ge W, Li N, Liu Q, Chen F, Yang X, Huang X, Ouyang Z, Zhang Q, Zhao Y, Liu Z, Gou S, Wu H, Lai C, Fan N, Jin Q, Shi H, Liang Y, Lan T, Quan L, Li X, Wang K, Lai L. Efficient base editing for multiple genes and loci in pigs using base editors. Nat Commun. 2019;10(1):2852. doi: 10.1038/s41467-019-10421-8.

Xie Z, Pang D, Yuan H, Jiao H, Lu C, Wang K, Yang Q, Li M, Chen X, Yu T, Chen X, Dai Z, Peng Y, Tang X, Li Z, Wang T, Guo H, Li L, Tu C, Lai L, Ouyang H. Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog. 2018;14(12):e1007193. doi: 10.1371/journal.ppat.1007193.

Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C, Yang H, Li L, Liu Q, Shi H, Xu G, Zhao H, Wei H, Pei Z, Li S, Lai L, Li XJ. A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration in Huntington's Disease. Cell. 2018;173(4):989-1002.e13. doi: 10.1016/j.cell.2018.03.005.

Yang L, Guell M, Byrne S, Yang JL, De Los Angeles A, Mali P, Aach J, Kim-Kiselak C, Briggs AW, Rios X, Huang PY, Daley G, Church G. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 2013;41(19):9049-61. doi: 10.1093/nar/gkt555.

Yao J, Huang J, Hai T, Wang X, Qin G, Zhang H, Wu R, Cao C, Xi JJ, Yuan Z, Zhao J. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep. 2014;4:6926. doi: 10.1038/srep06926.

Yao J, Huang J, Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet. 2016;135(9):1093-105. doi: 10.1007/s00439-016-1710-6.

Young AE, Mansour TA, McNabb BR, Owen JR, Trott JF, Brown CT, Van Eenennaam AL. Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nat Biotechnol. 2020;38(2):225-232. doi: 10.1038/s41587-019-0266-0.

Yu Y, Wang Y, Tong Q, Liu X, Su F, Quan F, Guo Z, Zhang Y. A site-specific recombinase-based method to produce antibiotic selectable marker free transgenic cattle. PLoS One. 2013;8(5):e62457. doi: 10.1371/journal.pone.0062457.

Yum SY, Lee SJ, Kim HM, Choi WJ, Park JH, Lee WW, Kim HS, Kim HJ, Bae SH, Lee JH, Moon JY, Lee JH, Lee CI, Son BJ, Song SH, Ji SM, Kim SJ, Jang G. Efficient generation of transgenic cattle using the DNA transposon and their analysis by next-generation sequencing. Sci Rep. 2016;6:27185. doi: 10.1038/srep27185.

Yum SY, Lee SJ, Park SG, Shin IG, Hahn SE, Choi WJ, Kim HS, Kim HJ, Bae SH, Lee JH, Moon JY, Lee WS, Lee JH, Lee CI, Kim SJ, Jang G. Long-term health and germline transmission in transgenic cattle following transposon-mediated gene transfer. BMC Genomics. 2018;19(1):387. doi: 10.1186/s12864-018-4760-4. P

Yusa K, Zhou L, Li MA, Bradley A, Craig NL. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A. 2011;108(4):1531-6. doi: 10.1073/pnas.1008322108.

Zayed H, Izsvák Z, Walisko O, Ivics Z. Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther. 2004;9(2):292-304. doi: 10.1016/j.ymthe.2003.11.024.

Zhang J, Cui ML, Nie YW, Dai B, Li FR, Liu DJ, Liang H, Cang M. CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. FEBS J. 2018;285(15):2828-2839. doi: 10.1111/febs.14520.

Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol Ther Nucleic Acids. 2015;4(11):e264. doi: 10.1038/mtna.2015.37.

Zhang Y, Wang Y, Yulin B, Tang B, Wang M, Zhang C, Zhang W, Jin J, Li T, Zhao R, Yu X, Zuo Q, Li B. CRISPR/Cas9-mediated sheep MSTN gene knockout and promote sSMSCs differentiation. J Cell Biochem. 2018. doi: 10.1002/jcb.27474.

Zhao J, Lai L, Ji W, Zhou Q. Genome editing in large animals: current status and future prospects. Natl Sci Rev. 2019;6(3):402-420. doi: 10.1093/nsr/nwz013.

Zheng Q, Lin J, Huang J, Zhang H, Zhang R, Zhang X, Cao C, Hambly C, Qin G, Yao J, Song R, Jia Q, Wang X, Li Y, Zhang N, Piao Z, Ye R, Speakman JR, Wang H, Zhou Q, Wang Y, Jin W, Zhao J. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci U S A. 2017;114(45):E9474-E9482. doi: 10.1073/pnas.1707853114.

Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, Yi X, Guo L, Esteban MA, Zeng Y, Yang H, Lai L. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci. 2015;72(6):1175-84. doi: 10.1007/s00018-014-1744-7.

Downloads

Published

2022-12-22

How to Cite

Kumar, D., & Kues, W.A. (2022). Genome Engineering in Livestock: Recent Advances and Regulatory Framework. Animal Reproduction Update , 3(1), 14–30. https://doi.org/10.48165/aru.2023.3.1.5