Curcumin supplementation ameliorates heat stress and affects early embryonic development

Authors

  • Ritika Embryo Biotechnology Lab, Animal Biotechnology Division ICAR- National Dairy Research Institute, Karnal-132001 (Haryana) India
  • Sudha Saini Embryo Biotechnology Lab, Animal Biotechnology Division ICAR- National Dairy Research Institute, Karnal-132001 (Haryana) India
  • Shavi Embryo Biotechnology Lab, Animal Biotechnology Division ICAR- National Dairy Research Institute, Karnal-132001 (Haryana) India
  • N L Selokar Embryo Biotechnology Lab, Animal Biotechnology Division ICAR- National Dairy Research Institute, Karnal-132001 (Haryana) India
  • M K Singh Embryo Biotechnology Lab, Animal Biotechnology Division ICAR- National Dairy Research Institute, Karnal-132001 (Haryana) India

DOI:

https://doi.org/10.48165/aru.2023.4.1.5

Keywords:

Antioxidant, Curcumin, Embryo, Heat Stress

Abstract

The temperature-humidity index (THI) is used to present the environmental factors causing heat stress. Heat stress's effects on the effectiveness of reproduction have been extensively studied and reported. The length of endocrine state, estrus, follicular growth and development, fertilization, conception rate, uterine function, luteolytic processes, early embryonic development, and fetal growth have all been demonstrated that altered by heat stress. Heat stress is considered to cause oxygen-derived free radicals, or reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) or superoxide anion, to be produced in oocytes/embryos, hence inducing oxidative stress. Antioxidants, both enzymatic and non-enzymatic, provide vital defense against oxidative damage caused by heat stress. Curcumin has anti-inflammatory, anti-cancer, anti-infectious, and antioxidant properties, it is widely used in many biological and medical fields. Curcumin uses this process to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) and when added to the culture media during in vitro culture, protect the embryos from ROS and encourage embryo growth as well as fetal development. This review aims to summarize the current knowledge on the role of curcumin during heat stress and embryonic development.

References

Abdelnour SA, Swelum AA, Abd El-Hack ME, Khafaga AF, Taha AE, Abdo M. Cellular and functional adaptation to thermal stress in ovarian granulosa cells in mammals. J Therm Biol. 2020;92:102688. doi: 10.1016/j.jtherbio.2020.102688.

Abeyta MA, Al-Qaisi M, Horst EA, Mayorga EJ, Rodriguez Jimenez S, Goetz BM, Carta S, Tucker H, Baumgard LH. Effects of dietary antioxidant supplementation on metab olism and inflammatory biomarkers in heat-stressed dairy cows. J Dairy Sci. 2023;106(2):1441-1452. doi: 10.3168/ jds.2022-22338.

Alahmar AT. Role of Oxidative Stress in Male Infertility: An Updated Review. J Hum Reprod Sci. 2019;12(1):4-18. doi: 10.4103/jhrs.JHRS_150_18.

Alibraheemi NA, Bustani GS, Al-Dhalimy AM. Effect of cur cumin on LH and FSH hormones of polycystic syndrome induced by letrozole in female rats. Latin Amer J Pharm. 2021;40:179-183.

Alisi IO, Uzairu A, Abechi SE. Molecular design of curcumin analogues with potent antioxidant properties and thermo dynamic evaluation of their mechanism of free radical scav enge. Bull Natl Res Cent. 2020;44(1):137.

Anand T, Kumar D, Chauhan MS, Manik RS, Palta P. Cysteamine supplementation of in vitro maturation medium, in vitro culture medium or both media promotes in vitro develop ment of buffalo (Bubalus bubalis) embryos. Reprod Fertil Dev. 2008;20(2):253-7. doi: 10.1071/rd07167.

Arshad U, Sagheer M, González-Silvestry FB, Hassan M, Sosa F. Vitrification improves in-vitro embryonic survival in Bos taurus embryos without increasing pregnancy rate post embryo transfer when compared to slow-freezing: A systematic meta-analysis. Cryobiology. 2021;101:1-11. doi: 10.1016/j.cryobiol.2021.06.007.

Ashraf S, Shah SM, Saini N, Dhanda S, Kumar A, Goud TS, Singh MK, Chauhan MS, Upadhyay RC. Developmental competence and expression pattern of bubaline (Bubalus bubalis) oocytes subjected to elevated temperatures during meiotic maturation in vitro. J Assist Reprod Genet. 2014;31(10):1349-60. doi: 10.1007/s10815-014-0275-3.

Azami SH, Nazarian H, Abdollahifar MA, Eini F, Farsani MA, Novin MG. The antioxidant curcumin postpones ovarian aging in young and middle-aged mice. Reprod Fertil Dev. 2020;32(3):292-303. doi: 10.1071/RD18472.

Banez MJ, Geluz MI, Chandra A, Hamdan T, Biswas OS, Bryan NS, Von Schwarz ER. A systemic review on the antiox idant and anti-inflammatory effects of resveratrol, cur cumin, and dietary nitric oxide supplementation on human

cardiovascular health. Nutr Res. 2020;78:11-26. doi: 10.1016/j.nutres.2020.03.002.

Baskaran S, Finelli R, Agarwal A, Henkel R. Reactive oxygen spe cies in male reproduction: A boon or a bane? Andrologia. 2021 Feb;53(1):e13577. doi: 10.1111/and.13577.

Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel). 2021;13(2):281. doi: 10.3390/cancers13020281.

Budani MC, Tiboni GM. Effects of Supplementation with Natural Antioxidants on Oocytes and Preimplantation Embryos. Antioxidants (Basel). 2020;9(7):612. doi: 10.3390/ antiox9070612.

Chen X, Shu H, Sun F, Yao J, Gu X. Impact of Heat Stress on Blood, Production, and Physiological Indicators in Heat Tolerant and Heat-Sensitive Dairy Cows. Animals (Basel). 2023;13(16):2562. doi: 10.3390/ani13162562.

Ciuca MD, Racovita RC. Curcumin: Overview of Extraction Methods, Health Benefits, and Encapsulation and Delivery Using Microemulsions and Nanoemulsions. Int J Mol Sci. 2023;24(10):8874. doi: 10.3390/ijms24108874.

Cowell W, Ard N, Herrera T, Medley EA, Trasande L. Ambient temperature, heat stress and fetal growth: A review of placenta-mediated mechanisms. Mol Cell Endocrinol. 2023;576:112000. doi: 10.1016/j.mce.2023.112000.

Currin L, Baldassarre H, Bordignon V. In Vitro Production of Embryos from Prepubertal Holstein Cattle and Mediterranean Water Buffalo: Problems, Progress and Potential. Animals (Basel). 2021;11(8):2275. doi: 10.3390/

ani11082275.

Cuthbert JM. Comparative analysis of small non-coding RNA and messenger RNA expression in somatic cell nuclear transfer and in vitro-fertilized bovine embryos during early development and through the maternal-to-embryonic tran

sition. Ph. D Dissertation, Utah State University, ProQuest Dissertations Publishing, 2020, 28148828.

Dias SD, Palmeira-de-Oliveira A, Rolo J, Gomes-Ruivo P, Oliani AH, Palmeira-de-Oliveira R, Martinez-de-Oliveira J, Pinto-de-Andrade L. Parameters influencing the mat uration of bovine oocyte: a review. Anim Prod Sci. 2022;62:751-764.

Dovolou E, Giannoulis T, Nanas I, Amiridis GS. Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows. Animals (Basel). 2023;13(11):1846. doi: 10.3390/ ani13111846.

Elamaran G, Singh KP, Singh MK, Singla SK, Chauhan MS, Manik RS, Palta P. Oxygen concentration and cysteam

ine supplementation during in vitro production of buf falo (Bubalus bubalis) embryos affect mRNA expression of BCL-2, BCL-XL, MCL-1, BAX and BID. Reprod Domest Anim. 2012;47(6):1027-36. doi: 10.1111/j.1439- 0531.2012.02009.x.

Ghanem N, Ashour G, Samy R, Khalil BS. Molecular Responses of heat stress during early embryonic development and alle viation strategies. Egypt J Anim Prod. 2022;59(4):9-17.

Guo J, Cao X, Hu X, Li S, Wang J. The anti-apoptotic, anti oxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol Toxicol. 2020;21(1):62. doi: 10.1186/s40360- 020-00440-3.

Gupta N, Verma K, Nalla S, Kulshreshtha A, Lall R, Prasad S. Free Radicals as a Double-Edged Sword: The Cancer Preventive and Therapeutic Roles of Curcumin. Molecules. 2020 Nov 18;25(22):5390. doi: 10.3390/molecules25225390.

Hafez MH, El-Kazaz SE, Alharthi B, Ghamry HI, Alshehri MA, Sayed S, Shukry M, El-Sayed YS. The Impact of Curcumin on Growth Performance, Growth-Related Gene Expression, Oxidative Stress, and Immunological Biomarkers in Broiler Chickens at Different Stocking Densities. Animals (Basel). 2022;12(8):958. doi: 10.3390/ani12080958.

Huang FJ, Lan KC, Kang HY, Liu YC, Hsuuw YD, Chan WH, Huang KE. Effect of curcumin on in vitro early post-im plantation stages of mouse embryo development. Eur J Obstet Gynecol Reprod Biol. 2013;166(1):47-51. doi: 10.1016/j.ejogrb.2012.09.010.

Huber E, Notaro US, Recce S, Rodríguez FM, Ortega HH, Salvetti NR, Rey F. Fetal programming in dairy cows: Effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions. Anim Reprod Sci. 2020;216:106348. doi: 10.1016/j.anirepro

sci.2020.106348.

Hunyadi A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox sig naling and the generation of bioactive secondary metab olites. Med Res Rev. 2019;39(6):2505-2533. doi: 10.1002/ med.21592.

Khan I, Mesalam A, Heo YS, Lee SH, Nabi G, Kong IK. Heat Stress as a Barrier to Successful Reproduction and Potential Alleviation Strategies in Cattle. Animals (Basel). 2023;13(14):2359. doi: 10.3390/ani13142359.

Kumbhar UB, Charpe BK, Kumar S. Bovine embryonic mortal ity with special reference to mineral deficiency, heat stress and endocrine factors: A review. Int J Bio-Resour Stress Manag. 2021;12(1):47-58.

Labarrere CA, Kassab GS. Glutathione: A Samsonian life-sus taining small molecule that protects against oxidative

stress, ageing and damaging inflammation. Front Nutr. 2022;9:1007816. doi: 10.3389/fnut.2022.1007816. Liang J, Gao Y, Feng Z, Zhang B, Na Z, Li D. Reactive oxygen species and ovarian diseases: Antioxidant strategies. Redox Biol. 2023;62:102659. doi: 10.1016/j.redox.2023.102659. Liu W, Cui X, Zhong Y, Ma R, Liu B, Xia Y. Phenolic metab olites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacol Res. 2023;193:106812. doi: 10.1016/j.phrs.2023.106812. Mafruchati M, Othman NH, Wardhana AK. Analysis of the impact of heat stress on embryo development of broiler: a literature review. Pharmacogn J. 2023;15(5).

Memarzia A, Khazdair MR, Behrouz S, Gholamnezhad Z, Jafarnezhad M, Saadat S, Boskabady MH. Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and cur

cumin, an updated and comprehensive review. Biofactors. 2021;47(3):311-350. doi: 10.1002/biof.1716.

Menezo Y, Clement P, Dale B, Elder K. Modulating oxida tive stress and epigenetic homeostasis in preimplantation IVF embryos. Zygote. 2022;30(2):149-158. doi: 10.1017/ S0967199421000356.

Mohamed Z, Abd El AE, Awadalla EA, El-Baga SE. Curcumin exerts its antioxidant and neuroprotective effects against aluminum-induced oxidative stress and neurotoxicity in male albino rats. Acta Sci Biol Sci. 2023;45:64651.

Namula Z, Sato Y, Wittayarat M, Le QA, Nguyen NT, Lin Q, Hirata M, Tanihara F, Otoi T. Curcumin supplementation in the maturation medium improves the maturation, fertilisation and developmental competence of porcine oocytes. Acta Vet Hung. 2020;68(3):298-304. doi: 10.1556/004.2020.00041.

Nzeyimana JB, Fan C, Zhuo Z, Butore J, Cheng J. Heat stress effects on the lactation performance, reproduction, and alleviating nutritional strategies in dairy cattle, a review. J Anim Behav Biometeorol. 2023;11(3):2023018.

Ouellet V, Laporta J, Dahl GE. Late gestation heat stress in dairy cows: Effects on dam and daughter. Theriogenology. 2020;150:471-479. doi: 10.1016/j.theriogenology.2020. 03.011.

Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci. 2022;9(8):439. doi: 10.3390/vetsci9080439.

Ramos-Ibeas P, Gimeno I, Cañón-Beltrán K, Gutiérrez Adán A, Rizos D, Gómez E. Senescence and Apoptosis During in vitro Embryo Development in a Bovine Model. Front Cell Dev Biol. 2020;8:619902. doi: 10.3389/ fcell.2020.619902.

Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Tonk S, Kuruva CS, Bhatti JS, Kandimalla R, Vijayan M, Kumar S, Wang R, Pradeepkiran JA, Ogunmokun G, Thamarai K, Quesada K, Boles A, Reddy AP. Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer’s Disease. J Alzheimers Dis. 2018;61(3):843-866. doi: 10.3233/JAD

Rekha S, Nalini SJ, Bhuvana S, Kanmani S, Hirst JE, Venugopal V. Heat stress and adverse pregnancy outcome: Prospective cohort study. BJOG: Int J Gynaecol Obstet. 2023; doi. org/10.1111/1471-0528.17680.

Roth Z. Heat stress reduces maturation and developmental capac ity in bovine oocytes. Reprod Fertil Dev. 2021;33(2):66-75. Sahin K, Sahin E, Deeh PB, Kayri V, Orhan C, Sahin N. Role of the antioxidant defence system and transcription factors in preventing heat stress in poultry: a dietary approach. Worlds Poult Sci J. 2023;79(4):651-687.

Saifi B, Haftcheshmeh SM, Feligioni M, Izadpanah E, Rahimi K, Hassanzadeh K, Mohammadi A, Sahebkar A. An overview of the therapeutic effects of curcumin in reproductive dis orders with a focus on the antiinflammatory and immuno modulatory activities. Phytother Res. 2022;36(2):808-823. doi: 10.1002/ptr.7360.

Sakatani M. Effects of heat stress on bovine preimplantation embryos produced in vitro. J Reprod Dev. 2017;63(4):347- 352. doi: 10.1262/jrd.2017-045.

Sammad A, Umer S, Shi R, Zhu H, Zhao X, Wang Y. Dairy cow reproduction under the influence of heat stress. J Anim Physiol Anim Nutr (Berl). 2020;104(4):978-986. doi: 10.1111/jpn.13257.

Sesay AR. Effect of heat stress on dairy cow production, repro duction, health, and potential mitigation strategies. J Appl Adv Res. 2023;8:13-25.

Shang J, Yang C, Zheng H, Wang J, Huang F, Yang B, Liang X. Effects of curcumin on buffalo embryonic development in vitro. Buffalo Bull. 2013;32:456-459.

Siqueira LG, Silva MVG, Panetto JC, Viana JH. Consequences of assisted reproductive technologies for offspring function in cattle. Reprod Fertil Dev. 2019;32(2):82-97. doi: 10.1071/ RD19278.

Skliarov P, Kornienko V, Midyk S, Mylostyvyi R. Impaired repro ductive performance of dairy cows under heat stress. Agric Conspec Sci. 2022;87(2):85-92.

Szafarowska M, Jerzak M. Ovarian aging and infertility. Ginekol Pol. 2013;84(4):298-304. doi: 10.17772/gp/1580.

Wani KA, Irfan J, Malik JA. Impact of heat stress on embryonic implantation. In climate change and its impact on fertility. 2021; 99-112. doi: 10.4018/978-1-7998-4480-8.ch005.

Wolfenson D, Roth Z. Impact of heat stress on cow reproduction and fertility. Anim Front. 2018;9(1):32-38. doi: 10.1093/af/ vfy027.

Yadav A, Singh KP, Singh MK, Saini N, Palta P, Manik RS, Singla SK, Upadhyay RC, Chauhan MS. Effect of physiologically relevant heat shock on development, apoptosis and expres sion of some genes in buffalo (Bubalus bubalis) embryos produced in vitro. Reprod Domest Anim. 2013;48(5):858- 65. doi: 10.1111/rda.12175.

Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, Chang X, Zhang Q. The Role of Oxidative Stress and Natural Antioxidants in Ovarian Aging. Front Pharmacol. 2021;11:617843. doi: 10.3389/fphar.2020.617843.

Zeng J, Cai J, Wang D, Liu H, Sun H, Liu J. Heat stress affects dairy cow health status through blood oxygen availability. J Anim Sci Biotechnol. 2023 Sep 2;14(1):112. doi: 10.1186/ s40104-023-00915-3.

Downloads

Published

2024-02-17

How to Cite

Ritika, Saini, S., Shavi, Selokar, N.L., & Singh, .M.K. (2024). Curcumin supplementation ameliorates heat stress and affects early embryonic development. Animal Reproduction Update , 4(1), 21–28. https://doi.org/10.48165/aru.2023.4.1.5