Male Reproductive Tract Origin Sperm-quiescent Proteins: Prospects in Semen Cryopreservation of Livestock Species

Authors

  • Rajani K Paul Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, Haryana (India)-132001
  • Rajeev Chandel Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, Haryana (India)-132001
  • Suneel K Onteru Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, Haryana (India)-132001

DOI:

https://doi.org/10.48165/aru.2021.1202

Keywords:

Sperm-quiescent proteins, Purification, Mechanism of action, Recombinant production, Scope in semen preservation

Abstract

Cauda epididymis is known to preserve mature sperm in a quiescent state for several weeks without causing potential decline to fertilizing capacity of the sperm. This unique property of cauda epididymis has been attributed to the unique biochemical composition of cauda epididymal plasma and the presence of certain proteins having decapacitating and motility–inhibitory activities. Cryo-capacitation and low progressive motility are two common changes in cryopreserved semen across species and have been considered the underlying causes for low fertility rate of cryopreserved semen. Considering their potential roles in reversible inhibition of sperm capacitation and motility these naturally-occurring proteins may be suitable tools for minimizing cryo-capacitation and improving post-thaw progressive motility of cryopreserved semen by sparing available energy in sperm during cryopreservation. The present review attempts to bring out the status of purification, functional and mechanistic characterization of these sperm-quiescent proteins across species. In addition the status of recombinant production of these proteins by using different host systems and the scope for application of these proteins in semen cryopreservation of livestock species has also been described.

References

Aitken RJ, Drevet JR. The Importance of oxidative stress in determining the functionality of mammalian spermatozoa: A two-edged sword. Antioxidants (Basel). 2020;9(2):111. doi: 10.3390/antiox9020111.

Baas JW, Molan PC, Shannon P. Factors in seminal plasma of bulls that affect the viability and motility of spermatozoa. J Reprod Fertil. 1983;68(2):275-80. doi: 10.1530/jrf.0.0680275.

Brooks DE. 1990. Biochemistry of the male accessory glands. In: Marshall’s physiology of reproduction, vol. 2 pp 569-690 Ed. GE Lamming. Churchill Livingstone, Edinburgh

Carlson AE, Hille B, Babcock DF. External Ca2+ acts upstream of adenylyl cyclase SACY in the bicarbonate signaled activation of sperm motility. Dev Biol. 2007;312(1):183-92. doi: 10.1016/j.ydbio.2007.09.017.

Carr DW, Usselman MC, Acott TS. Effects of pH, lactate, and viscoelastic drag on sperm motility: a species comparison. Biol Reprod. 1985;33(3):588-95. doi: 10.1095/biolreprod33.3.588.

Chung JJ, Shim SH, Everley RA, Gygi SP, Zhuang X, Clapham DE. Structurally distinct Ca(2+) signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell. 2014;157(4):808-22. doi: 10.1016/j.cell.2014.02.056.

Dalal J, Chandolia RK, Pawaria S, Kumar A, Kumar D, Selokar NL, Andonissamy J, Yadav PS, Kumar P. Low-density lipoproteins protect sperm during cryopreservation in buffalo: Unraveling mechanism of action. Mol Reprod Dev. 2020;87(12):1231-1244. doi: 10.1002/mrd.23434.

Das S, Saha S, Majumder GC, Dungdung SR. Purification and characterization of a sperm motility inhibiting factor from caprine epididymal plasma. PLoS One. 2010;5(8):e12039. doi: 10.1371/journal.pone.0012039.

Dungdung SR, Majumder GC. Isolation and identification of a novel motility-inhibiting factor from goat cauda sperm plasma membrane. Cell Mol Biol. 2003;49(3):413-20.

Ellerman DA, Da Ros VG, Cohen DJ, Busso D, Morgenfeld MM, Cuasnicú PS. Expression and structure-function analysis of de, a sperm cysteine-rich secretory protein that mediates gamete fusion. Biol Reprod. 2002;67(4):1225-31. doi: 10.1095/biolreprod67.4.1225.

Ernesto JI, Weigel Muñoz M, Battistone MA, Vasen G, Martínez-López P, Orta G, Figueiras-Fierro D, De la Vega-Beltran JL, Moreno IA, Guidobaldi HA, Giojalas L, Darszon A, Cohen DJ, Cuasnicú PS. CRISP1 as a novel CatSper regulator that modulates sperm motility and orientation during fertilization. J Cell Biol. 2015;210(7):1213-24. doi: 10.1083/jcb.201412041.

Ghosh P, Mukherjee S, Bhoumik A, Dungdung SR. A novel epididymal quiescence factor inhibits sperm motility by modulating NOS activity and intracellular NO-cGMP pathway. J Cell Physiol. 2018;233(5):4345-4359. doi: 10.1002/jcp.26275.

Gibbs GM, Orta G, Reddy T, Koppers AJ, Martínez-López P, de la Vega-Beltràn JL, Lo JC, Veldhuis N, Jamsai D, McIntyre P, Darszon A, O'Bryan MK. Cysteine-rich secretory protein 4 is an inhibitor of transient receptor potential M8 with a role in establishing sperm function. Proc Natl Acad Sci U S A. 2011;108(17):7034-9. doi: 10.1073/pnas.1015935108.

Gibbs GM, Scanlon MJ, Swarbrick J, Curtis S, Gallant E, Dulhunty AF, O'Bryan MK. The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates ryanodine receptor Ca2+ signaling. J Biol Chem. 2006;281(7):4156-63. doi: 10.1074/jbc.M506849200.

Iwamoto T, Gagnon C. Purification and characterization of a sperm motility inhibitor in human seminal plasma. J Androl. 1988;9(6):377-83. doi: 10.1002/j.1939-4640.1988.tb01069.x.

Iwamoto T, Tsang A, Luterman M, Dickson J, de Lamirande E, Okuno M, Mohri H, Gagnon C. Purification and characterization of a sperm motility-dynein ATPase inhibitor from boar seminal plasma. Mol Reprod Dev. 1992;31(1):55-62. doi: 10.1002/mrd.1080310110.

Jeng H, Liu KM, Chang WC. Purification and characterization of reversible sperm motility inhibitors from porcine seminal plasma. Biochem Biophys Res Commun. 1993;191(2):435-40. doi: 10.1006/bbrc.1993.1236.

Jorasia K, Paul RK, Rathore NS, Lal P, Singh R, Sareen M. Production of bioactive recombinant ovine cysteine-rich secretory protein 1 in Escherichia coli. Syst Biol Reprod Med. 2021:1-11. doi: 10.1080/19396368.2021.1963012.

Kalpana J. 2019. Study on Molecular cloning, expression, purification and partial characterization of ovine cysteine-rich secretory protein 1 in E. coli. MVSc thesis submitted to RAJUVAS, Bikaner, Rajasthan.

Kurota H, Yamaguchi M. Regucalcin increases Ca2+-ATPase activity and ATP-dependent calcium uptake in the microsomes of rat kidney cortex. Mol Cell Biochem. 1997;177(1-2):201-7. doi: 10.1023/a:1006865507026.

Len JS, Koh WSD, Tan SX. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep. 2019;39(8):BSR20191601. doi: 10.1042/BSR20191601.

Nakagawa T, Yamaguchi M. Overexpression of regucalcin suppresses apoptotic cell death in cloned normal rat kidney proximal tubular epithelial NRK52E cells: change in apoptosis-related gene expression. J Cell Biochem. 2005;96(6):1274-85. doi: 10.1002/jcb.20617.

Nixon B, MacIntyre DA, Mitchell LA, Gibbs GM, O'Bryan M, Aitken RJ. The identification of mouse sperm-surface-associated proteins and characterization of their ability to act as decapacitation factors. Biol Reprod. 2006;74(2):275-87. doi: 10.1095/biolreprod.105.044644.

Paul RK, Balaganur K, Bahire SV, Kumar D, Singh R. Supplementation of cauda epididymal plasma improves sperm characteristics following liquid preservation of ram semen at 3-5°C. Reprod Fertil Dev. 2018b;30(11):1389-1401. doi: 10.1071/RD18063.

Paul RK, Balaganur K, Kumar D, Naqvi SMK. Modulation of seminal plasma content in extended semen improves the quality attributes of ram spermatozoa following liquid preservation at 3-5°C. Reprod Domest Anim. 2018a;53(5):1200-1210. doi: 10.1111/rda.13227.

Paul RK, Balaganur K, Kumar D, Singh R. Pre-freezing equilibration for 22 h improves post-thaw sperm functions in cryopreserved ram semen by reducing cholesterol efflux. Cryobiology. 2020;96:76-84. doi: 10.1016/j.cryobiol.2020.07.013.

Peitz B. Effects of seminal vesicle fluid components on sperm motility in the house mouse. J Reprod Fertil. 1988;83(1):169-76. doi: 10.1530/jrf.0.0830169.

Pillai H, Usharani J, Shende AM, Harikumar S, Bhure SK. Expression of the secretory form of recombinant regucalcin of Bubalus bubalis in methylotropic yeast. Indian J Anim Res. 2018; 52(1):41-45.

Pyare Lal. 2019. Study on partial purification of a motility inhibitory protein in ram caudaepididymal plasma. MVSc thesis submitted to RAJUVAS, Bikaner, Rajasthan.

Reddy T, Gibbs GM, Merriner DJ, Kerr JB, O'Bryan MK. Cysteine-rich secretory proteins are not exclusively expressed in the male reproductive tract. Dev Dyn. 2008;237(11):3313-23. doi: 10.1002/dvdy.21738.

Robert M, Gibbs BF, Jacobson E, Gagnon C. Characterization of prostate-specific antigen proteolytic activity on its major physiological substrate, the sperm motility inhibitor precursor/semenogelin I. Biochemistry. 1997;36(13):3811-9. doi: 10.1021/bi9626158.

Roberts KP, Wamstad JA, Ensrud KM, Hamilton DW. Inhibition of capacitation-associated tyrosine phosphorylation signaling in rat sperm by epididymal protein Crisp-1. Biol Reprod. 2003;69(2):572-81. doi: 10.1095/biolreprod.102.013771.

Ros-Santaella JL, Pintus E. Plant extracts as alternative additives for sperm preservation. Antioxidants (Basel). 2021;10(5):772. doi: 10.3390/antiox10050772.

Salamon S, Maxwell WMC. Frozen storage of ram semen I. Processing, freezing, thawing and fertility after cervical insemination. Anim Reprod Sci. 1995a; 37(3–4):185–249. doi: 10.1016/0378-4320(94)01327-I

Salamon S, Maxwell WMC. Frozen storage of ram semen II. Causes of low fertility after cervical insemination and methods of improvement. Anim Reprod Sci. 1995b; 38(1–2):1–36. doi: 10.1016/0378-4320(94)01328-J

Takahashi H, Yamaguchi M. Regucalcin modulates hormonal effect on (Ca(2+)-Mg2+)-ATPase activity in rat liver plasma membranes. Mol Cell Biochem. 1993;125(2):171-7. doi: 10.1007/BF00936446.

Turner TT, Reich GW. Cauda epididymal sperm motility: a comparison among five species. Biol Reprod. 1985;32(1):120-8. doi: 10.1095/biolreprod32.1.120.

Ugur MR, Saber Abdelrahman A, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, Purwantara B, Kaya A, Memili E. Advances in cryopreservation of bull sperm. Front Vet Sci. 2019;6:268. doi: 10.3389/fvets.2019.00268.

Usselman MC, Cone RA. Rat sperm are mechanically immobilized in the caudal epididymis by "immobilin," a high molecular weight glycoprotein. Biol Reprod. 1983;29(5):1241-53. doi: 10.1095/biolreprod29.5.1241.

Vadnais ML, Foster DN, Roberts KP. Molecular cloning and expression of the CRISP family of proteins in the boar. Biol Reprod. 2008;79(6):1129-34. doi: 10.1095/biolreprod.108.070177.

Volpert M, Mangum JE, Jamsai D, D'Sylva R, O'Bryan MK, McIntyre P. Eukaryotic expression, purification and structure/function analysis of native, recombinant CRISP3 from human and mouse. Sci Rep. 2014;4:4217. doi: 10.1038/srep04217.

Yamaguchi M, Kurota H. Inhibitory effect of regucalcin on Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity in rat kidney cytosol. Mol Cell Biochem. 1997;177(1-2):209-14. doi: 10.1023/a:1006829926590.

Yamaguchi M, Mori S, Kato S. Calcium-binding protein regucalcin is an activator of (Ca2+-Mg2+)-adenosine triphosphatase in the plasma membranes of rat liver. Chem Pharm Bull (Tokyo). 1988;36(9):3532-9. doi: 10.1248/cpb.36.3532.

Yamaguchi M, Mori S. Activation of hepatic microsomal Ca2+-adenosine triphosphatase by calcium-binding protein regucalcin. Chem Pharm Bull (Tokyo). 1989;37(4):1031-4. doi: 10.1248/cpb.37.1031.

Yamaguchi M, Tai H. Inhibitory effect of calcium-binding protein regucalcin on Ca2+/calmodulin-dependent cyclic nucleotide phosphodiesterase activity in rat liver cytosol. Mol Cell Biochem. 1991;106(1):25-30. doi: 10.1007/BF00231185.

Yamaguchi M, Takahashi H, Tsurusaki Y. Suppressive role of endogenous regucalcin in the enhancement of nitric oxide synthase activity in liver cytosol of normal and regucalcin transgenic rats. J Cell Biochem. 2003;88(6):1226-34. doi: 10.1002/jcb.10452.

Downloads

Published

2021-10-12

How to Cite

Paul, R.K., Chandel, R., & Onteru, S.K. (2021). Male Reproductive Tract Origin Sperm-quiescent Proteins: Prospects in Semen Cryopreservation of Livestock Species. Animal Reproduction Update , 1(1), 10–16. https://doi.org/10.48165/aru.2021.1202