Sensing Non-sense in Animal Sex From Perspective of Transposable Elements
DOI:
https://doi.org/10.48165/aru.2021.1201Keywords:
Transposable Elements, Evolution, Sex ChromosomesAbstract
The evolution of vertebrate species took shape through millions of years, where sex played an important role in maintenance of a lineage, genetic diversification and reproductive isolation. On due course of sexual evolution, sex determination strategies have been proposed to flow from temperature dependent sex determination to genetic sex determination, which has been demonstrated as XY system in mammals and ZW system in birds. In contrary to this established conception, different lineages showed to have overlapping sex-determining strategies. While searching possible reasons for these phenomenons, researchers observed that gene content of sex chromosomes is highly variable as far as their location and prevalence is concerned, which otherwise suggested autosomal origin of sex chromosomes. Although the exact mechanisms of gene transfer and thereby origin of sex chromosomes are yet to be unveiled, but chromosomal rearrangement and introgression has been hypothesized to be the possible effector. Transposable elements (TEs) are long been considered to be ‘Selfish’ or ‘Junk’ DNA material as most of the non-coding genomic regions are comprised by TEs, which did not make any sense to be a part of species genome. But recently, TEs are being considered to be a nature’s tool for biological innovation by creating new regulatory elements, new coding sequences, genetic disruption and chromosomal remodelling. So, this has been postulated that TEs could facilitate rearrangement and introgression, which ultimately lead to evolution of sex chromosomes and sex determining genes through positive selection. Prevalence of highly repetitive sequences in sex chromosomes, particularly in Y, makes it a hot bed for TEs mediated rearrangement and introgression. In this review, I tried to discuss whether it makes any sense to focus on the role of TEs in sexual evolution of animals.
References
Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJ, Bierne N, Boughman J, et al. Hybridization and speciation. J Evol Biol. 2013;26(2):229-46. doi: 10.1111/j.1420-9101.2012.02599.x.
Acuña R, Padilla BE, Flórez-Ramos CP, Rubio JD, Herrera JC, Benavides P, Lee SJ, Yeats TH, Egan AN, Doyle JJ, Rose JK. Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci U S A. 2012;109(11):4197-202. doi: 10.1073/pnas.1121190109.
Aitken RJ, Marshall Graves JA. The future of sex. Nature. 2002;415(6875):963. doi: 10.1038/415963a.
Arakawa Y, Nishida-Umehara C, Matsuda Y, Sutou S, Suzuki H. X-chromosomal localization of mammalian Y-linked genes in two XO species of the Ryukyu spiny rat. Cytogenet Genome Res. 2002;99(1-4):303-9. doi: 10.1159/000071608.
Arkhipova I, Meselson M. Deleterious transposable elements and the extinction of asexuals. Bioessays. 2005;27(1):76-85. doi: 10.1002/bies.20159.
Ayala D, Guerrero RF, Kirkpatrick M. Reproductive isolation and local adaptation quantified for a chromosome inversion in a malaria mosquito. Evolution. 2013;67(4):946-58. doi: 10.1111/j.1558-5646.2012.01836.x.
Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D. The origins of reproductive isolation in plants. New Phytol. 2015;207(4):968-84. doi: 10.1111/nph.13424.
Belyayev A. Bursts of transposable elements as an evolutionary driving force. J Evol Biol. 2014;27(12):2573-84. doi: 10.1111/jeb.12513.
Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol. 2014;65:505-30. doi: 10.1146/annurev-arplant-050213-035811.
Bock I R. The bipectinata Complex: A Study in interspecific hybridization in the genus Drosophila (Insecta: Diptera). Australian J Biol Sci. 1978;31(2):197-208. Doi:10.1071/BI9780197.
Brunet TD, Doolittle WF. Multilevel Selection Theory and the Evolutionary Functions of Transposable Elements. Genome Biol Evol. 2015;7(8):2445-57. doi: 10.1093/gbe/evv152.
Casacuberta E, González J. The impact of transposable elements in environmental adaptation. Mol Ecol. 2013;22(6):1503-17. doi: 10.1111/mec.12170.
Charnov EL, Bull J. When is sex environmentally determined? Nature. 1977;266(5605):828-30. doi: 10.1038/266828a0.
Collignon J, Sockanathan S, Hacker A, Cohen-Tannoudji M, Norris D, Rastan S, Stevanovic M, Goodfellow PN, Lovell-Badge R. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development. 1996;122(2):509-20.
Comai L, Madlung A, Josefsson C, Tyagi A. Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids? Philos Trans R Soc Lond B Biol Sci. 2003;358(1434):1149-55. doi: 10.1098/rstb.2003.1305.
Coyne JA, Orr HA. Patterns of speciation in drosophila" revisited. Evolution. 1997;51(1):295-303. doi: 10.1111/j.1558-5646.1997.tb02412.x.
Coyne JA, Orr HA. Patterns of speciation in drosophila. Evolution. 1989;43(2):362-381. doi: 10.1111/j.1558-5646.1989.tb04233.x.
Coyne JA, Orr HA. Speciation. 2004; Sunderland, Massachusetts USA: Sinauer Associates, Inc. Publishers. xiii, 545 pages, 2 pages of plates.
Darwin, C.D.J.F.H.W., On the origin of species by means of natural selection: or, The preservation of favoured races in the struggle for life. 1859.
de Campos Bicudo HeM. Chromosomal polymorphism in the saltans group of Drosophila I. The saltans subgroup. Genetica. 1973; 44(4):520-552.
de Campos Bicudo HeM. Reproductive isolation in the saltans group of Drosophila. I. The saltans subgroup. Genetica. 1973; 44(3): 313-329.
de la Cruz F, Davies J. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol. 2000;8(3):128-33. doi: 10.1016/s0966-842x(00)01703-0.
Delbridge ML, Longepied G, Depetris D, Mattei MG, Disteche CM, Marshall Graves JA, Mitchell MJ. TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X - implications for Y chromosome evolution. Chromosome Res. 2004;12(4):345-56. doi: 10.1023/B:CHRO.0000034134.91243.1c.
Dobzhansky T. Genetic nature of species differences. The American Naturalist. 1937; 71(735): 404-420.
El Baidouri M, Carpentier MC, Cooke R, Gao D, Lasserre E, Llauro C, Mirouze M, Picault N, Jackson SA, Panaud O. Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res. 2014;24(5):831-8. doi: 10.1101/gr.164400.113.
Ellstrand NC. Is gene flow the most important evolutionary force in plants? Am J Bot. 2014;101(5):737-53. doi: 10.3732/ajb.1400024.
Ezaz T, Quinn AE, Miura I, Sarre SD, Georges A, Marshall Graves JA. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 2005;13(8):763-76. doi: 10.1007/s10577-005-1010-9.
Fablet M, Vieira C. Evolvability, epigenetics and transposable elements. Biomol Concepts. 2011;2(5):333-41. doi: 10.1515/BMC.2011.035. Fedoroff, N.V., zolt. Cell, 1989. 56(2): p. 181-91.
Feschotte C, Jiang N, Wessler SR. Plant transposable elements: where genetics meets genomics. Nat Rev Genet. 2002;3(5):329-41. doi: 10.1038/nrg793.
Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet. 2008;9(5):397-405. doi: 10.1038/nrg2337.
Flutre T, Duprat E, Feuillet C, Quesneville H. Considering transposable element diversification in de novo annotation approaches. PLoS One. 2011;6(1):e16526. doi: 10.1371/journal.pone.0016526.
Foster JW, Graves JA. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci U S A. 1994;91(5):1927-31. doi: 10.1073/pnas.91.5.1927.
Graves JA. Sex chromosome specialization and degeneration in mammals. Cell. 2006;124(5):901-14. doi: 10.1016/j.cell.2006.02.024.
Graves JA. The origin and function of the mammalian Y chromosome and Y-borne genes--an evolving understanding. Bioessays. 1995;17(4):311-20. doi: 10.1002/bies.950170407.
Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD. Eukaryotic genome size databases. Nucleic Acids Res. 2007;35(Database issue):D332-8. doi: 10.1093/nar/gkl828.
Guerreiro MP. Interspecific hybridization as a genomic stressor inducing mobilization of transposable elements in Drosophila. Mob Genet Elements. 2014;4:e34394. doi: 10.4161/mge.34394.
Haring E, Hagemann S, Pinsker W. Different evolutionary behaviour of P element subfamilies: M-type and O-type elements in Drosophila bifasciata and D. imaii. Gene. 1995;163(2):197-202. doi: 10.1016/0378-1119(95)00334-3.
Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 2009;19(8):1419-28. doi: 10.1101/gr.091678.109.
Hughes JF, Skaletsky H, Pyntikova T, Minx PJ, Graves T, Rozen S, Wilson RK, Page DC. Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee. Nature. 2005;437(7055):100-3. doi: 10.1038/nature04101.
Just W, Rau W, Vogel W, Akhverdian M, Fredga K, Graves JA, Lyapunova E. Absence of Sry in species of the vole Ellobius. Nat Genet. 1995;11(2):117-8. doi: 10.1038/ng1095-117.
Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G, Yandell M, Feschotte C. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 2013;9(4):e1003470. doi: 10.1371/journal.pgen.1003470.
Kirkpatrick M, Barton N. Chromosome inversions, local adaptation and speciation. Genetics. 2006;173(1):419-34. doi: 10.1534/genetics.105.047985. Epub 2005 Oct 3. Erratum in: Genetics. 2018 Jan;208(1):433.
Koyano S, Ito M, Takamatsu N, Takiguchi S, Shiba T. The Xenopus Sox3 gene expressed in oocytes of early stages. Gene. 1997;188(1):101-7. doi: 10.1016/s0378-1119(96)00790-1.
Lachaise D, Cariou ML, David JR, Lemeunier F, Tsacas L, Ashburner M. Historical biogeography of the drosophila melanogaster species subgroup. In: Hecht MK, Wallace B, Prance GT. (eds) Evolutionary Biology. Evolutionary Biology, 1988; 22. Springer, Boston, MA. Doi: 10.1007/978-1-4613-0931-4_4.
Ladevèze V, Aulard S, Chaminade N, Périquet G, Lemeunier F. Hobo transposons causing chromosomal breakpoints. Proc Biol Sci. 1998;265(1402):1157-9. doi: 10.1098/rspb.1998.0412.
Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science. 1999 Oct 29;286(5441):964-7. doi: 10.1126/science.286.5441.964. Erratum in: Science 1999;286(5448):2273.
Lahn BT, Page DC. Functional coherence of the human Y chromosome. Science. 1997;278(5338):675-80. doi: 10.1126/science.278.5338.675.
Li SF, Su T, Cheng GQ, Wang BX, Li X, Deng CL, Gao WJ. Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants. Genes (Basel). 2017;8(10):290. doi: 10.3390/genes8100290.
Lim JK. Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1988;85(23):9153-7. doi: 10.1073/pnas.85.23.9153.
Liou LW, Price TD. Speciation by reinforcement of premating isolation. Evolution. 1994;48(5):1451-1459. doi: 10.1111/j.1558-5646.1994.tb02187.x.
Lucca Jr Md, Carareto CMA, Ceron CR. Distribution of the Bari-I transposable element in stable hybrid strains between Drosophila melanogaster and Drosophila simulans and in Brazilian populations of these species. Genet Mol Biol. 2007; 30 (3). Doi: 10.1590/S1415-47572007000400028
Maan ME, Seehausen O. Ecology, sexual selection and speciation. Ecol Lett. 2011;14(6):591-602. doi: 10.1111/j.1461-0248.2011.01606.x.
Marshall GJA, Shetty S. Comparative genomics of vertebrates and the evolution of sex chromosomes. In: Clark MS (eds) Comparative Genomics. 2000; Springer, Boston, MA. Doi:10.1007/978-1-4615-4657-3_7.
Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, Matsuda Y. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci USA. 2006;103(48):18190-5. doi: 10.1073/pnas.0605274103.
McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA. 1950;36(6):344-55. doi: 10.1073/pnas.36.6.344.
Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature. 2007;447(7141):167-77. doi: 10.1038/nature05805.
Morgan TH. Croonian Lecture:-On the mechanism of heredity. Proc R Soc Lond B. 1922; 94162-197. Doi:10.1098/rspb.1922.0053.
Muller HJ. The relation of recombination to mutational advance. Mutat Res. 1964;106:2-9. doi: 10.1016/0027-5107(64)90047-8.
Nanda I, Zend-Ajusch E, Shan Z, Grützner F, Schartl M, Burt DW, Koehler M, Fowler VM, Goodwin G, Schneider WJ, Mizuno S, Dechant G, Haaf T, Schmid M. Conserved synteny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene DMRT1: a comparative (re)view on avian sex determination. Cytogenet Cell Genet. 2000;89(1-2):67-78. doi: 10.1159/000015567.
Okamoto H, Hirochika H. Silencing of transposable elements in plants. Trends Plant Sci. 2001;6(11):527-34. doi: 10.1016/s1360-1385(01)02105-7.
Oliver KR, Greene WK. Transposable elements: powerful facilitators of evolution. Bioessays. 2009;31(7):703-14. doi: 10.1002/bies.200800219.
Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol. 2013;5(10):1886-901. doi: 10.1093/gbe/evt141.
Pask A, Renfree MB, Marshall Graves JA. The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRY: implications for the evolution of mammalian sex determination. Proc Natl Acad Sci USA. 2000;97(24):13198-202. doi: 10.1073/pnas.230424497.
Pauchet Y, Heckel DG. The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc Biol Sci. 2013;280(1763):20131021. doi: 10.1098/rspb.2013.1021.
Peccoud J, Loiseau V, Cordaux R, Gilbert C. Massive horizontal transfer of transposable elements in insects. Proc Natl Acad Sci U S A. 2017;114(18):4721-4726. doi: 10.1073/pnas.1621178114.
Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Graves JA. Temperature sex reversal implies sex gene dosage in a reptile. Science. 2007;316(5823):411. doi: 10.1126/science.1135925.
Rieseberg LH. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001;16(7):351-358. doi: 10.1016/s0169-5347(01)02187-5.
Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page DC. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature. 2003;423(6942):873-6. doi: 10.1038/nature01723.
Rundle HD, Nosil P. Ecological speciation. Ecology Letters. 2005; 8(3): 336-352. doi: 10.1111/j.1461-0248.2004.00715.x
Sarre SD, Georges A, Quinn A. The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. Bioessays. 2004;26(6):639-45. doi: 10.1002/bies.20050.
Schaack S, Gilbert C, Feschotte C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol. 2010;25(9):537-46. doi: 10.1016/j.tree.2010.06.001.
Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, et al. Genomics and the origin of species. Nat Rev Genet. 2014;15(3):176-92. doi: 10.1038/nrg3644.
Shetty S, Griffin DK, Graves JA. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res. 1999;7(4):289-95. doi: 10.1023/a:1009278914829.
Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: building the web of life. Nat Rev Genet. 2015;16(8):472-82. doi: 10.1038/nrg3962.
Stapley J, Santure AW, Dennis SR. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol. 2015;24(9):2241-52. doi: 10.1111/mec.13089.
Sutou S, Mitsui Y, Tsuchiya K. Sex determination without the Y chromosome in two Japanese rodents Tokudaia osimensis osimensis and Tokudaia osimensis spp. Mamm Genome. 2001;12(1):17-21. doi: 10.1007/s003350010228.
Tamura K, Subramanian S, Kumar S. Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol. 2004;21(1):36-44. doi: 10.1093/molbev/msg236.
Tapia G, Verdugo I, Yañez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, González E, Ruiz-Lara S. Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiol. 2005;138(4):2075-86. doi: 10.1104/pp.105.059766.
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3(9):711-21. doi: 10.1038/nrmicro1234.
Trizzino M, Park Y, Holsbach-Beltrame M, Aracena K, Mika K, Caliskan M, Perry GH, Lynch VJ, Brown CD. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res. 2017;27(10):1623-1633. doi: 10.1101/gr.218149.116.
Tsend-Ayush E, O'Sullivan LA, Grützner FS, Onnebo SM, Lewis RS, Delbridge ML, Marshall Graves JA, Ward AC. RBMX gene is essential for brain development in zebrafish. Dev Dyn. 2005;234(3):682-8. doi: 10.1002/dvdy.20432.
van de Lagemaat LN, Landry JR, Mager DL, Medstrand P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 2003;19(10):530-6. doi: 10.1016/j.tig.2003.08.004.
Vershinin AV, Allnutt TR, Knox MR, Ambrose MJ, Ellis TH. Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol Biol Evol. 2003;20(12):2067-75. doi: 10.1093/molbev/msg220.
Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, Grützner F, Deakin JE, Whittington CM, Schatzkamer K, Kremitzki CL, Graves T, Ferguson-Smith MA, Warren W, Marshall Graves JA. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 2008;18(6):965-73. doi: 10.1101/gr.7101908.
Vinogradov AE. Evolution of genome size: multilevel selection, mutation bias or dynamical chaos? Curr Opin Genet Dev. 2004;14(6):620-6. doi: 10.1016/j.gde.2004.09.007.
Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, Belov K, et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature. 2008;453(7192):175-83. doi: 10.1038/nature06936.
Waters PD, Duffy B, Frost CJ, Delbridge ML, Graves JA. The human Y chromosome derives largely from a single autosomal region added to the sex chromosomes 80-130 million years ago. Cytogenet Cell Genet. 2001;92(1-2):74-9. doi: 10.1159/000056872.
Watson JM, Spencer JA, Riggs AD, Graves JA. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation. Proc Natl Acad Sci USA. 1990;87(18):7125-9. doi: 10.1073/pnas.87.18.7125.
Werren JH. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci U S A. 2011;108 Suppl 2 (Suppl 2):10863-70. doi: 10.1073/pnas.1102343108.
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8(12):973-82. doi: 10.1038/nrg2165.
Woodhouse MR, Freeling M, Lisch D. Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol. 2006;4(10):e339. doi: 10.1371/journal.pbio.0040339.
Yao B, Zhou L, Wang Y, Xia W, Gui JF. Differential expression and dynamic changes of SOX3 during gametogenesis and sex reversal in protogynous hermaphroditic fish. J Exp Zool A Ecol Genet Physiol. 2007;307(4):207-19. doi: 10.1002/jez.361.
Zeh DW, Zeh JA, Ishida Y. Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays. 2009;31(7):715-26. doi: 10.1002/bies.200900026.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.