ONE-STEP PREPARATION OF PROTEIN A/G-CONJUGATED CdSe/MSA QUANTUM DOTS FOR ULTRAFAST WESTERN BLOT VISUALIZATION

Authors

  • Hong-Diep Thi Tran Department of Molecular and Environmental Biotechnology, University of Science, Hochiminh City, Vietnam
  • Le Khanh-Thien Department of Molecular and Environmental Biotechnology, University of Science, Hochiminh City, Vietnam
  • Hieu Tran-Van Department of Molecular and Environmental Biotechnology, University of Science, Hochiminh City, Vietnam

DOI:

https://doi.org/10.48165/

Keywords:

CdSe/MSA, protein A/G (pA/G), Quantum Dots (QDs), Western blot

Abstract

Protein A/G (pA/G) has high affinity with the fragment crystallizable (Fc) region of antibodies so is used as a linker to attach antibodies to quantum  dots (QDs), thereby helps the antigen-binding fragment (Fab) to expose  outwardly. The present study deduced the interactive nature between  pA/G and mercaptosuccinic acid-coated CdSe (CdSe/MSA) QDs by using  different reagents to interfere the binding formation. Besides, the use of  pA/G-conjugated QDs (QDs-pA/G) in Western blot was tested by using  QDs-pA/G associated with anti-GST antibodies to label mPrPc-GST  protein in Escherichia coli lysates. The results showed that most of the  pA/G could not bind to QDs in presence of 2% sodium dodecyl sulfate, 0.1  ol and 1% tween 20. The study revealed that pA/G was  mostly bound to CdSe/MSA QDs by non-covalent interactions. The QDs pA/G wassuccessfully applied in direct Western blot with a stronger signal  

Downloads

Download data is not yet available.

References

Blancher, C. and Jones, A. 2001. SDS-PAGE and Western blotting techniques. Metastasis Research Protocols, 57: 145-162.

de Moreno, M.R., Smith, J.F. and Smith, R.V. 1985. Silver staining of proteins in polyacrylamide gels: Increased sensitivity through a combined Coomassie blue-silver stain procedure. Analytical Biochemistry, 151: 466-470.

Foubert, A., Beloglazova, N.V., Rajkovic, A., Sas, B., Madder, A., Goryacheva, I.Y. and De Saeger, S. 2016. Bioconjugation of quantum dots: Review & impact on future application. Trends in Analytical Chemistry, 83: 31-48.

Gilroy, K.L., Cumming, S.A. and Pitt, A.R. 2010. A simple, sensitive and selective quantum-dot based western blot method for the simultaneous detection of multiple targets from cell lysates. Analytical and Bioanalytical Chemistry, 398: 547-554.

Goede, K., Busch, P. and Grundmann, M. 2004. Binding specificity of a peptide on semiconductor surfaces. Nano Letters, 4: 2115-2120.

He, X., Gao, L. and Ma, N. 2013. One-step instant synthesis of protein-conjugated quantum dots at room temperature. Scientific Reports, 3: 1-11.

Johnson, M. 2013. Detergents: Triton X-100, tween-20, and more. Mater Methods, 3: 163. [https://dx.doi.org/10.13070/mm.en.3.163].

Krȩżel, A., Leśniak, W., Jeżowska-Bojczuk, M., Młynarz, P., Brasuñ, J., Kozłowski, H. and Bal, W. 2001. Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. Journal of Inorganic Biochemistry, 84: 77-88.

Makride, S.C., Gasbarro, C. and Bello, J.M. 2005. Bioconjugation of quantum dot luminescent probes for Western blot analysis. Biotechniques, 39: 501-506.

Ultrafast Western blot visualization using QDs-pA/G-antibodies 25

Mortz, E., Krogh, T.N., Vorum, H. and Görg, A. 2001. Improved silver staining protocols for high sensitivity protein identification using matrix‐assisted laser desorption/ionization‐time of flight analysis. Proteomics: International Edition, 1: 1359-1363.

Peelle, B.R., Krauland, E.M., Wittrup, K.D. and Belcher, A.M. 2005. Design criteria for engineering inorganic material-specific peptides. Langmuir, 21: 6929-6933.

Rosenthal, S.J., Chang, J.C., Kovtun, O., McBride, J.R. and Tomlinson, I.D. 2011. Biocompatible quantum dots for biological applications. Chemistry and Biology, 18: 10-24. Tran, T.H.D., Le, K.T., Vo, N.T. and Tran-Van, H. 2019. Preparation and cell labeling evaluation of antibody-conjugated CdSe/MSA quantum dots. pp. 307-310. In: Proceedings of The 7th International Workshop on Nanotechnology and Application, IWNA 2019, 6-9 Nov. 2019, Phan Thiet, Vietnam.

Tran, T.H.D., Le, K.T., Mai, H.T.D., Tran, L.T. and Tran-Van, H. 2020. Application of antibody conjugated CdSe/MSA quantum dots on immunohistochemistry. SSR Institute of International Journal of Life Sciences, 6: 2520-2527.

Truong, H.M.N., Huynh, K.Q. and Tran-Van, H. 2019. Cloning, expression, and refolding prion protein (PrPC) from murine fused with GST-tag. Can Tho University Journal of Science, 5: 16- 22.

Tsuboi, S., Sasaki, A., Sakata, T., Yasuda, H. and Jin, T. 2017. Immunoglobulin binding (B1) domain mediated antibody conjugation to quantum dots for in vitro and in vivo molecular imaging. Chemical Communications, 53: 9450-9453.

Valizadeh, A., Mikaeili, H., Samiei, M., Farkhani, S.M., Zarghami, N., Kouhi, M., Akbarzadeh, A. and Davaran, S. 2012. Quantum dots: Synthesis, bioapplications and toxicity. Nanoscale Research Letters, 7: 480 [https://doi.org/10.1186/1556-276X-7-480]

Vo, N.T., Vu, T.B., Tran, T.H.D., Le, K.T., Tran-Van, H., Nguyen, T.B. and Lam, Q.V. 2020. Jurkat T cell detectability and toxicity evaluation of low-temperature synthesized cadmium quantum dots. Journal of Nanomaterials, 2020: 8. [https://doi.org/10.1155/2020/9346423].

Zrazhevskiy, P. and Gao, X. 2013. Quantum dot imaging platform for single-cell molecular profiling. Nature Communications, 4: 1-12.

Published

2023-11-16

How to Cite

ONE-STEP PREPARATION OF PROTEIN A/G-CONJUGATED CdSe/MSA QUANTUM DOTS FOR ULTRAFAST WESTERN BLOT VISUALIZATION . (2023). Applied Biological Research, 23(1), 21–25. https://doi.org/10.48165/