PHYLOGENETIC RELATIONSHIP BETWEEN THE BAMBOO SPECIES OF TRIBE BAMBUSEAE AND ARUNDINARIEAE BASED ON matK GENE SEQUENCES

Authors

  • Kamlakar C More Department of Botany, Sant Gadge Baba Amravati University, Amravati – 444 602, Maharashtra (India)
  • Prashant A Gawande Department of Botany, Sant Gadge Baba Amravati University, Amravati – 444 602, Maharashtra (India)

DOI:

https://doi.org/10.48165/

Keywords:

Arundinarieae, bamboo, Bambuseae, DNA polymorphism, maturase K, phylogeny

Abstract

The identification and classification of bamboos based on morphological  characters is a quite difficult task due to long and irregular flowering, lack of  sufficient distinguished morphological characters and environmental  influence. The present study was aimed to elucidate the phylogenetic relation ship between the species of tribe Bambuseae and Arundinarieae based on  maturase K (matK) as a candidate gene marker. Fifteen bamboo species matK  genes were sequenced and their accession numbers (OM57488 to OM417520) generated from NCBI along with matK gene sequences of additional bamboo  species including the outgroup species retrieved from Gene Bank to infer the  phylogenetic relationship. The phylogenetic tree of Maximum Liklihood  (ML) and Maximum Parsimony (MP) revealed that the bamboo species of  tribe Bambuseae and Arundinarieae were clustered in separate clades, with  some exceptions. TheMLtree showedaclose relationship between Ochlandrae  bracteata and Schizostachyum polymorphum with 96% bootstrapping support.  Similarly, Bambusa assamica, Gigantochloa atroviolacea and Bambusa  polymorpha; and B. oliveriana, B. wamin and B. nutans showed sister relation ships. Clade-II showed the group of species of tribe Arundinarieae, except  Schizostachyubrachycladum and Gignatochloa rostrata, the Phyllostachys  nidularia and Phyllostachys aureosulcata seem to be recently evolved. The MP  tree showed association between Schizostachym polymorphum and Ochlandrae  bracteata with 91% bootstrapping support, while, Gigantochloa atroviolacea and B. assamica exhibited close association with 97% bootstrapping support.  The inferences from the phylogenetic trees and DNA polymorphism analysis that matK gene possessed moderate revolutionary potential for  species discrimination, for better phylogerevealed netic resolution. The multigene  barcode approach along with phenotypic observations need to be considered.  

Downloads

Download data is not yet available.

References

Amom, T., Tikendra, L. and Rahman, H. 2018. Evaluation of genetic relationship between 15 bamboo species of North-East India based on ISSR marker analysis. Molecular Biology Research Communications, 7(1): 7-15.

Bamboo Phylogeny Group. 2012. An updated tribal and sub-tribal classification of bamboos (Poaceae: Bambusoideae). Bamboo Science and Culture: The Journal of the American Bamboo Society, 24(1): 1-10.

Daniel, E., Klein, Johannes, K., Alexandre, A. and Daniele, S. 2021. RAxMLGUI 2.0 beta: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution, 12: 373-377.

Hall, T. 2007. Bioedit, Version 7.0.9. (Online). Ibis Biosciences, Carlsbad, 1997-2007. [http://www.mbio.ncsu.edu/BioEdit/bioedit.html].

Kamlakar C. More and Prashant A. Gawande

Huang, N.J., Li, J.P., Yang, G.Y. and Yu, F. 2020. Two plastomes of Phyllostachys and reconstruction of phylogenic relationship amongst selected Phyllostachys species using genome skimming. Mitochondrial DNA Part B: Resources, 5(1): 69-70.

Jones, D.T., Taylor W.R. and Thornton J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences, 8: 275-282. Kelchner, S.A. and Bamboo Phylogeny Group. 2013. Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. Molecular Phylogenetics and Evolution, 67: 404-413.

Kumari, P. and Singh, P. 2014. Bamboos of Meghalaya. Botanical Survey of India, Ministry of Environment and Forests, Government of India, New Delhi, India.

Meena, R.K., Negi, N., Uniyal, N., Shamoon, A. and Bhandari, M.S. 2020. Chloroplast‑based DNA barcode analysis indicates high discriminatory potential of matK locus in Himalayan temperate bamboos. 3 Biotech, 10(12): 1-13. [doi:10.1007/s13205-02002508-7].

Ramakrishnan, M., Kim, Y., Kunnummal, V., Anket, S., Jungnam, C., Viswanathan, S. and Zhou, M. 2020. Genetics and genomics of Moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food and Energy Security, 9.10.1002/fes3.229. [https://doi.org/10.1002/fes3.229].

Rozas, J., Ferrer-Mata, A., Sánchez-Del Barrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. and Sánchez-Gracia, A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution, 34: 3299-3302.

Seethalakshmi, K.K. and Kumar, M. 1998. Bamboos of India – A Compendium. BIC India, Kerala Forest Research Institute, Peechi and International Network for Bamboo and Rattan, New Delhi, India.

Tajima, F. and Nei, M. 1984. Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution, 1: 269-285.

Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10: 512-526.

Tamura, K., Stecher, G. and Kumar, S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38: 3022-3027.

Triplett, J.K. and Clark, L.G. 2010. Phylogeny of the temperate bamboos (Poaceae: Bambusoideae: Bambuseae) with an emphasis on Arundinaria and allies. Systematic Botany, 35: 102-120. Wang, A.K., Lu, Q.F., Zhu, Z.X., Liu, S.H., Zhong, H., Xiao Z.Z., Zou, Y.G., Gu, L.J., Du, X.H.,

Cai, H.J. and Bi, Y.F. 2022. Exploring phylogenetic relationships within the subgenera of Bambusa based on DNA barcodes and morphological characteristics. Scientific Reports, 12: 8018. [https://doi.org/10.1038/s41598-02212094-8].

Wysocki, W.P., Clark, L.G., Attigala, L., Ruiz-Sanchez, E. and Duvall, M.R. 2015. Evolution of the bamboos (Bambusoideae; Poaceae): A full plastome phylogenomic analysis genome evolution and evolutionary systems biology. BMC Evolution and Biology, 15(1): 1112. [doi:10.1186/s12862-015-0321-5].

Zhang, W.P. and Clark, L.G. 2000. Phylogeny and classification of the Bambusoideae (Poaceae). pp. 35-42. In: Grasses: Systematics and Evolution (eds. S.W.L. Jacobs and J. Everett). CSIRO, Melbourne, Australia.

Zheng, X.., Yang, M., Ding, Y. and Lin, S.Y. 2020. The complete chloroplast genome sequence of Acidosasa gigantea (Bambusoideae: Arundinarieae): An ornamental bamboo species endemic to China. Mitochondrial DNA Part B, 5(1): 1119-1121.

Zhu, S., Liu, T., Tang, Q., Fu, L. and Tang, S. 2014. Evaluation of bamboo genetic diversity using morphological and SRAP analyses. Russian Journal of Genetics, 50(3): 267-273.

Published

2023-11-16

How to Cite

PHYLOGENETIC RELATIONSHIP BETWEEN THE BAMBOO SPECIES OF TRIBE BAMBUSEAE AND ARUNDINARIEAE BASED ON matK GENE SEQUENCES . (2023). Applied Biological Research, 24(4), 463–470. https://doi.org/10.48165/