MULTI-DRUG RESISTANT Escherichia coli AND Proteus mirabilis FROM THIRUVANANTHAPURAM, KERALA (INDIA)

Authors

  • Pooja P Rajan Department of Zoology, Government College for Women, Thiruvananthapuram – 695 014, Kerala (India)
  • Abhirami P Sreekantan Department of Zoology, Government College for Women, Thiruvananthapuram – 695 014, Kerala (India)
  • Minsa Mini Department of Zoology, Government College for Women, Thiruvananthapuram – 695 014, Kerala (India)
  • Sajeeb Khan Department of Zoology, Government College for Women, Thiruvananthapuram – 695 014, Kerala (India)
  • Praveen Kumar Department of Zoology, Government College for Women, Thiruvananthapuram – 695 014, Kerala (India)

DOI:

https://doi.org/10.48165/

Keywords:

Efflux pumps, extended-spectrum β-lactamase, tetA, Escherichia coli, Proteus mirabilis

Abstract

Escherichia coli and Proteus mirabilis are Gram-negative, rod-shaped uro pathogens that frequently cause urinary tract infections. They have gained  importance due to the emergence of multi-drug resistance in them. This  work compares the antibiotic resistance pattern of clinical isolates of E.  β-lactam resistance mechanism. The antibiotic susceptibility of E. coli and  P. mirabilis was assessed by Kirby-Bauer disc diffusion assay. Extended spectrum β-lactamase was detected by a modified double-disc synergy test  and EZY MICTM strip test. The amplification of drug-resistant gene was  done by PCR. The role of efflux pump was determined by using the efflux  pump inhibitor, carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The  results of antibiotic susceptibility test indicated multi-drug resistant  phenotypes along with tetracycline and β-lactam resistance. E. coli was  found to be extended-spectrum β-lactamase producer; whereas P. mirabilis yielded negative result. PCR results showed the presence of tetA gene in E.  Further, efflux pump assay using efflux inhibitor CCCP proved that the  efflux mechanism causes tetracycline resistance. The study necessitates the  continuous monitoring of antimicrobial drug resistance in uropathogens  for better therapeutic approaches to curtail the risk of AMR. 

Downloads

Download data is not yet available.

References

Ardebili, A., Talebi, M., Azimi, L. and Rastegar, L.A. 2014. Effect of efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone on the minimum inhibitory concentration of ciprofloxacin in Acinetobacter baumannii clinical isolates. Jundishapur Journal of Microbiology, 7: e8691. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138672/].

Adamus-Bialek, W., Zajac, E., Parniewski, P. and Kaca, W. 2013. Comparison of antibiotic resistance patterns in collections of Escherichia coli and Proteus mirabilis uropathogenic strains. Molecular Biology Reports, 40: 3429-3435.

Bassetti, M., Giacobbe, D.R., Robba, C., Pelosi, P. and Vena, A. 2020. Treatment of extended spectrum β-lactamases infections: What is the current role of new β-lactams/β-lactamase inhibitors? Current Opinion in Infectious Diseases, 33: 474-481.

Bharara, T., Sharma, A., Gur, R., Duggal, S.D., Jena, P.P. and Kumar, A. 2018. Comparative analysis of extended-spectrum beta-lactamases producing uropathogens in outpatient and inpatient departments. International Journal of Health & Allied Sciences, 7: 45. [https://www. ijhas.in/text.asp?2018/7/1/45/226259].

Bush, K. 2018. Past and present perspectives on β-lactamases. Antimicrobial Agents and Chemotherapy, 62: Article 10. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153792/]. Clinical and Laboratory Standards Institute (CLSI). 2013. Performance Standards for Antimicrobial Susceptibility Testing; 23rd Informational Supplement M100-S23. CLSI, Wayne, USA.

Pooja P. Rajan et al.

Dadgostar, P. 2019. Antimicrobial resistance: Implications and costs. Infection and Drug Resistance, 12: 3903-3910.

Dallenne, C., Da Costa, A., Decré, D., Favier, C. and Arlet, G. 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. The Journal of Antimicrobial Chemotherapy, 65: 490-495.

Daoud, Z., Salem Sokhn, E., Masri, K., Cheaito, K., Haidar-Ahmad, N., Matar, G. M. and Doron, S. 2015. Escherichia coli Isolated from urinary tract infections of lebanese patients between 2005 and 2012: Epidemiology and profiles of resistance. Frontiers in Medicine, 2: 26. [https://www.frontiersin.org/articles/10.3389/fmed.2015.00026/full].

Flores-Mireles, A.L., Walker, J.N., Caparon, M. and Hultgren, S.J. 2015. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13: 269-284.

Foxman, B. 2014. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infectious Disease Clinics of North America, 28: 1-13. Grossman, T.H. 2016. Tetracycline antibiotics and resistance. Cold Spring Harbor Perspectives in Medicine, 6: a025387. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817740/]. Guay, G.G. and Rothstein, D.M. 1993. Expression of the tetK gene from Staphylococcus aureus in Escherichia coli: Comparison of substrate specificities of TetA(B), TetA(C), and TetK efflux proteins. Antimicrobial Agents and Chemotherapy, 37: 191-198.

Jacobsen, S.M., Stickler, D.J., Mobley, H.L.T. and Shirtliff, M.E. 2008. Complicated catheter associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clinical Microbiology Reviews, 21: 26-59.

Kanayama, A., Iyoda, T., Matsuzaki, K., Saika, T., Ikeda, F., Ishii, Y., Yamaguchi, K. and Kobayashi, I. 2010. Rapidly spreading CTX-M-type beta-lactamase-producing Proteus mirabilis in Japan. International Journal of Antimicrobial Agents, 36: 340-342.

Karami, N., Nowrouzian, F., Adlerberth, I. and Wold, A.E. 2006. Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrobial Agents and Chemotherapy, 50: 156-161.

Kaur, J., Chopra, S., Sheevani, and Mahajan, G. 2013. Modified double disc synergy test to detect ESBL production in urinary isolates of Escherichia coli and Klebsiella pneumoniae. Journal of Clinical and Diagnostic Research, 7: 229-233.

Khoshnood, S., Heidary, M., Mirnejad, R., Bahramian, A., Sedighi, M. and Mirzaei, H. 2017. Drug resistant gram-negative uropathogens: A review. Biomedicine and Pharmacotherapy, 94: 982- 994.

Li, X.Z. and Nikaido, H. 2009. Efflux-mediated drug resistance in bacteria: An update. Drugs, 69: 1555-1623. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847397/].

Mirkalantari, S., Masjedian, F., Irajian, G., Siddig, E.E. and Fattahi, A. 2020. Determination of the frequency of β-lactamase genes (bla SHV, bla TEM, bla CTX-M) and phylogenetic groups among ESBL-producing uropathogenic Escherichia coli isolated from outpatients. Journal of Laboratory Medicine, 44: 27-33.

Møller, T.S.B., Overgaard, M., Nielsen, S.S., Bortolaia, V., Sommer, M.O.A., Guardabassi, L. and Olsen, J.E. 2016. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiology, 16: 39. [https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4788846/].

Muriuki, C.W., Ogonda, L.A., Kyanya, C., Matano, D., Masakhwe, C., Odoyo, E. and Musila, L. 2021. Phenotypic and genotypic characteristics of uropathogenic Escherichia coli isolates from Kenya. Microbial Drug Resistance, 28: 31-38.

Nakama, R., Shingaki, A., Miyazato, H., Higa, R., Nagamoto, C., Hamamoto, K., Ueda, S., Hachiman, T., Touma, Y., Miyagi, K., Kawahara, R., Toyosato, T. and Hirai, I. 2016. Current status of extended spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae

Multi-drug resistant Escherichia coli and Proteus mirabilis 447

and Proteus mirabilis in Okinawa prefecture, Japan. Journal of Infection and Chemotherapy, 22: 281-286.

Pal, N., Hooja, S., Sharma, R. and Maheshwari, R. 2016. Phenotypic detection and antibiogram of β-lactamase-producing Proteus species in a tertiary care hospital, India. Annals of Medical and Health Sciences Research, 6: 267-273.

Pandit, R., Awal, B., Shrestha, S.S., Joshi, G., Rijal, B.P. and Parajuli, N.P. 2020. Extended spectrum β-lactamase (ESBL) genotypes among multidrug-resistant uropathogenic Escherichia coli clinical isolates from a Teaching Hospital of Nepal. Interdisciplinary Perspectives on Infectious Diseases, 2020: 6525826. [https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC7181012/].

Poole, K. 2004. Resistance to β-lactam antibiotics. Cellular and Molecular Life Sciences, 61: 2200- 2223.

Rawat, D., and Nair, D. 2010. Extended-spectrum β-lactamases in Gram negative bacteria. Journal of Global Infectious Diseases, 2: 263-274.

Reygaert, W.C. 2018. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4: 482-501.

Roberts, M.C. 2005. Update on acquired tetracycline resistance genes. FEMS Microbiology Letters, 245: 195-203.

Saeb, A.T.M., Al-Rubeaan, K.A., Abouelhoda, M., Selvaraju, M. and Tayeb, H. T. 2017. Genome sequencing and analysis of the first spontaneous nanosilver resistant bacterium Proteus mirabilis strain SCDR1. Antimicrobial Resistance and Infection Control, 6: 119. [https://aricjournal.biomedcentral.com/articles/10.1186/s13756-017-0277-x].

Sekar, R., Srivani, S., Amudhan, M. and Mythreyee, M. 2016. Carbapenem resistance in a rural part of southern India: Escherichia coli versus Klebsiella spp. The Indian Journal of Medical Research, 144: 781-783.

Shams, S., Hashemi, A., Esmkhani, M., Kermani, S., Shams, E. and Piccirillo, A. 2018. Imipenem resistance in clinical Escherichia coli from Qom, Iran. BMC Research Notes, 11: 314. [https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-018-3406-6].

Sundsfjord, A., Simonsen, G.S., Haldorsen, B.C., Haaheim, H., Hjelmevoll, S.O., Littauer, P. and Dahl, K.H. 2004. Genetic methods for detection of antimicrobial resistance. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 112: 815-837.

Swaminathan, A., Ardra, M., Manoharan, A., Nair, K.P. and Girija, K.R. 2016. Characterization of carbapenemase-producing Gram-negative bacilli among clinical isolates in a tertiary care centre in Kerala, South India. Journal of The Academy of Clinical Microbiologists, 18: 100. [https://www.jacmjournal.org/text.asp?2016/18/2/100/194934].

Teklu, D.S., Negeri, A.A., Legese, M.H., Bedada, T.L., Woldemariam, H.K. and Tullu, K.D. 2019. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrobial Resistance and Infection Control, 8: 39 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377715/].

Tooke, C.L., Hinchliffe, P., Bragginton, E.C., Colenso, C.K., Hirvonen, V.H.A., Takebayashi, Y. and Spencer, J. 2019. β-lactamases and β-lactamase inhibitors in the 21st century. Journal of Molecular Biology, 431: 3472-3500.

Ventola, C.L. 2015. The antibiotic resistance crisis. Pharmacy and Therapeutics, 40: 277-283.

Published

2023-11-16

How to Cite

MULTI-DRUG RESISTANT Escherichia coli AND Proteus mirabilis FROM THIRUVANANTHAPURAM, KERALA (INDIA) . (2023). Applied Biological Research, 24(4), 440–447. https://doi.org/10.48165/