SCREENING OF HERBAL MOLECULES FOR THE MANAGEMENT OF ALZHEIMER’S DISORDER: In silico AND in vitro APPROACHES

Authors

  • Priyanka Nagu Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu – 333 001, Rajasthan (India)
  • Amjad Khan A Pathan Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu – 333 001, Rajasthan (India)
  • Vineet Mehta Department of Pharmacology, Government College of Pharmacy, Rohru - 171 207, Himachal Pradesh (India)

DOI:

https://doi.org/10.48165/

Keywords:

Alzheimer’s disease, anti-inflammatory, antioxidant, molecular docking, quercetin, rutin

Abstract

The current therapeutics for Alzheimer’s disorder (AD) is aimed at  providing the symptomatic relief from AD and it continues to progress  steadily despite ongoing therapy. The present study was aimed to identify  the herbal molecules that could utilize multiple pathways of AD  pathogenesis for better AD management. One hundred herbal molecules  were selected and subjected to docking analysis against  acetylcholinesterase (AChE) (1EVE), butyrylcholinesterase (BChE) 4B0P), and Tau protein kinase (1J1B). Based on the docking score, RMSD  value, inhibition constant (Ki), and amino acids involved, β-carotene,  dihydrotanshinone-I, glabridin, liriodenine, morin, N-formylanonaine,  quercetin, quercitrin, rutin, sumaflavone, and vitisinol C were found to be  the best molecules. These molecules were then subjected to in vitro screening for their antioxidant and anti-inflammatory potential. Quercetin  and rutin were observed to be the most promising antioxidant and anti inflammatory molecules which could be beneficial during AD by targeting  the oxidative- and inflammatory-stress pathways. The results predicted  that quercetin has potential to target multiple pathways of AD  pathogenesis so could prove beneficial in treating AD; however, further  analysis is still required. 

Downloads

Download data is not yet available.

References

Abdel-Salam, O.M., Hamdy, S.M., Seadawy, S.A., Galal, A.F., Abouelfadl, D.M. and Atrees, S.S. 2016. Effect of piracetam, vincamine, vinpocetine, and donepezil on oxidative stress and neurodegeneration induced by aluminum chloride in rats. Comparative Clinical Pathology, 25: 305-318. [https://doi.org/10.1007/s00580-015-2182-0].

Ahmed, T., and Braidy, N. 2021. From oxidative stress to cognitive decline-towards novel therapeutic approaches. Frontiers in Molecular Neuroscience, 14: 650498. [https://doi.org/10.3389/fnmol.2021.650498].

Almaz, Z., Oztekin, A., Tan, A. and Ozdemir, H. 2021. Biological evaluation and molecular docking studies of 4-aminobenzohydrazide derivatives as cholinesterase inhibitors. Journal of Molecular Structure, 1244: 130918. [https://doi.org/10.1016/j.molstruc.2021.130918].

Apak, R., Ozyurek, M., Guclu, K. and Capanoglu, E. 2016. Antioxidant activity/capacity measurement. 3. Reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays. Journal of Agricultural and Food Chemistry, 64(5): 1046-1070. [https://doi.org/10.1021/acs.jafc.5b04744].

Athar, T., Al Balushi, K. and Khan, S.A. 2021. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Molecular Biology Reports, 48(7): 5629- 5645. [https://doi.org/10.1007/s11033-021-06512-9].

Buccellato, F.R., D’Anca, M., Fenoglio, C., Scarpini, E. and Galimberti, D. 2021. Role of oxidative damage in Alzheimer’s disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery. Antioxidants, 10(9): 1353. [https://doi.org/10.3390/antiox10091353].

Cao, S., Fisher, D.W., Rodriguez, G., Yu, T. and Dong, H. 2021. Comparisons of neuroinflammation, microglial activation, and degeneration of the locus coeruleus norepinephrine system in APP/PS1 and aging mice. Journal of Neuroinflammation, 18(1): 1-16.

Dai, S., Zhou, F., Sun, J. and Li, Y. 2021. NPD1 Enhances autophagy and reduces hyperphosphorylated tau and amyloid-β 42 by inhibiting GSK3β activation in N2a/APP695swe cells. Journal of Alzheimer's Disease, 84(2): 869-881.

de Boer, V.C., Dihal, A.A., van der Woude, H., Arts, I.C., Wolffram, S., Alink, G.M., Rietjens, I.M., Keijer, J. and Hollman, P.C. 2005. Tissue distribution of quercetin in rats and pigs. The Journal of Nutrition, 135(7): 1718-1725. [https://doi.org/10.1093/jn/135.7.1718].

Digiacomo, M., Chen, Z., Wang, S., Lapucci, A., Macchia, M., Yang, X., Chu, J., Han, Y., Pi, R. and Rapposelli, S. 2015. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorganic & Medicinal Chemistry Letters, 25(4): 807-810. [https://doi.org/10.1016/j.bmcl.2014.12.084].

El-Hachem, N., Haibe-Kains, B., Khalil, A., Kobeissy, F.H. and Nemer, G. 2017. AutoDock and AutoDockTools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study. pp. 391-403. In: Neuroproteomics. Humana Press, New York, USA. [https://doi.org/10.1007/978-1-4939-6952-4_20].

Faria, A., Pestana, D., Teixeira, D., Azevedo, J., Freitas, V., Mateus, N. and Calhau, C. 2010. Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cellular and Molecular Biology Letters, 15(2): 234-241. [https://doi.org/10.2478/s11658-010-0006-4].

Forman, H.J. and Zhang, H. 2021. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9): 689-709.

Gregory, J., Vengalasetti, Y.V., Bredesen, D.E. and Rao, R.V. 2021. Neuroprotective herbs for the management of Alzheimer’s disease. Biomolecules, 11(4): 543. [https://doi.org/10.3390/biom11040543].

Gul, R., Jan, H., Lalay, G., Andleeb, A., Usman, H., Zainab, R., Qamar, Z., Hano, C. and Abbasi, B.H., 2021. Medicinal plants and biogenic metal oxide nanoparticles: A paradigm shift to treat Alzheimer’s disease. Coatings, 11(6): 717. [https://doi.org/10.3390/coatings11060717].

Priyanka Nagu et al.

Guo, X., Lie, Q., Liu, Y., Jia, Z., Gong, Y., Yuan, X. and Liu, J. 2021. Multifunctional selenium quantum dots for the treatment of Alzheimer’s disease by reducing Aβ-neurotoxicity and oxidative stress and alleviate neuroinflammation. ACS Applied Materials and Interfaces, 13 (26): 30261-30273. [https://doi.org/10.1021/acsami.1c00690].

Habtemariam, S. 2016. Rutin as a natural therapy for Alzheimer’s disease: Insights into its mechanisms of action. Current Medicinal Chemistry, 23(9): 860-873.

Hawkins, M., Sockalingam, S., Bonato, S., Rajaratnam, T., Ravindran, M., Gosse, P. and Sheehan, K.A. 2021. A rapid review of the pathoetiology, presentation, and management of delirium in adults with COVID-19. Journal of Psychosomatic Research, 141: 110350. [https://doi.org/10.1016/j.jpsychores.2020.110350].

Huebbe, P., Wagner, A.E., Boesch-Saadatmandi, C., Sellmer, F., Wolffram, S. and Rimbach, G., 2010. Effect of dietary quercetin on brain quercetin levels and the expression of antioxidant and Alzheimer's disease relevant genes in mice. Pharmacological Research, 61(3): 242-246.

Ishisaka, A., Ichikawa, S., Sakakibara, H., Piskula, M.K., Nakamura, T., Kato, Y., Ito, M., Miyamoto, K.I., Tsuji, A., Kawai, Y. and Terao, J. 2011. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radical Biology and Medicine, 51(7): 1329-1336. [https://doi.org/10.1016/j.freeradbiomed.2011.06.017].

Jiang, X., Zhang, Z., Zuo, J., Wu, C., Zha, L., Xu, Y., Wang, S., Shi, J., Liu, X.H., Zhang, J. and Tang, W. 2021. Novel cannabidiol−carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer's disease. European Journal of Medicinal Chemistry, 223: 113735. [https://doi.org/10.1016/j.ejmech.2021.113735].

Kempuraj, D., Mentor, S., Thangavel, R., Ahmed, M.E., Selvakumar, G.P., Raikwar, S.P., Dubova, I., Zaheer, S., Iyer, S.S. and Zaheer, A. 2019. Mast cells in stress, pain, blood-brain barrier, neuroinflammation and Alzheimer’s disease. Frontiers in Cellular Neuroscience, 13: 54. [https://doi.org/10.3389/fncel.2019.00054].

Kim, N., Wang, B., Koikawa, K., Nezu, Y., Qiu, C., Lee, T.H. and Zhou, X.Z. 2021. Inhibition of death-associated protein kinase 1 attenuates cis P-tau and neurodegeneration in traumatic brain injury. Progress in Neurobiology, 203: 102072. [https://doi.org/10.1016/j.pneurobio.2021.102072].

Kinchen, J.M., Mohney, R.P. and Pappan, K.L. 2021. Long-chain acylcholines link butyrylcholinesterase to regulation of non-neuronal cholinergic signaling. Journal of Proteome Research. 21(3): 599-611. [https://doi.org/10.1021/acs.jproteome.1c00538].

Lanzillotta, C., Tramutola, A., Di Giacomo, G., Marini, F., Butterfield, D.A., Di Domenico, F., Perluigi, M. and Barone, E. 2021. Insulin resistance, oxidative stress and mitochondrial defects in Ts65dn mice brain: A harmful synergistic path in down syndrome. Free Radical Biology and Medicine, 165: 152-170. [https://doi.org/10.1016/j.freeradbiomed.2021.01.042].

Lawal, H.A., Uzairu, A. and Uba, S. 2021. QSAR, molecular docking studies, ligand-based design and pharmacokinetic analysis on Maternal Embryonic Leucine Zipper Kinase (MELK) inhibitors as potential anti-triple-negative breast cancer (MDA-MB-231 cell line) drug compounds. Bulletin of the National Research Centre, 45(1): 1-20.

Li, S.P., Wang, Y.W., Qi, S.L., Zhang, Y.P., Deng, G., Ding, W.Z., Ma, C., Lin, Q.Y., Guan, H.D., Liu, W. and Cheng, X.M. 2018. Analogous β-carboline alkaloids harmaline and harmine ameliorate scopolamine-induced cognition dysfunction by attenuating acetylcholinesterase activity, oxidative stress, and inflammation in mice. Frontiers in Pharmacology, 9: 346. [https://doi.org/10.3389/fphar.2018.00346].

Lim, S.I., Hahn, Y.S. and Kwon, I. 2015. Site-specific albumination of a therapeutic protein with multi-subunit to prolong activity in vivo. Journal of Controlled Release, 207: 93-100. Liu, L., Zou, M., Zeng, K., Ye, X., Wang, R., Wang, W. and Zhang, X. 2021. Chemical constituents and their antioxidant, anti-Inflammatory and anti-acetylcholinesterase activities from Pholidota cantonensis. Plant Foods for Human Nutrition, 76(1): 105-110.

Screening of herbal molecules for Alzheimer’s disorder 271

Madhusoodanan, K.S. and Murad, F., 2007. NO-cGMP signaling and regenerative medicine involving stem cells. Neurochemical Research, 32(4): 681-694.

Marttinen, M., Takalo, M., Natunen, T., Wittrahm, R., Gabbouj, S., Kemppainen, S., Leinonen, V., Tanila, H., Haapasalo, A. and Hiltunen, M. 2018. Molecular mechanisms of synaptotoxicity and neuroinflammation in Alzheimer’s disease. Frontiers in Neuroscience, 12: 963. [https://doi.org/10.3389/fnins.2018.00963].

Marucci, G., Buccioni, M., Dal Ben, D., Lambertucci, C., Volpini, R. and Amenta, F. 2021. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology, 190: 108352. [https://doi.org/10.1016/j.neuropharm.2020.108352].

Masurkar, P.P., Chatterjee, S., Sherer, J.T. and Aparasu, R.R. 2021. Antimuscarinic cascade across individual cholinesterase inhibitors in older adults with dementia. Drugs & Aging, 38: 593-602. Maurya, S.K., Bhattacharya, N., Mishra, S., Bhattacharya, A., Banerjee, P., Senapati, S. and Mishra, R. 2021. Microglia specific drug targeting using natural products for the regulation of

redox imbalance in neurodegeneration. Frontiers in Pharmacology, 12: 654489. [https://doi.org/10.3389/fphar.2021.654489].

Mehla, J., Gupta, P., Pahuja, M., Diwan, D. and Diksha, D. 2020. Indian medicinal herbs and formulations for Alzheimer’s disease, from traditional knowledge to scientific assessment. Brain Sciences, 10(12): 964. [https://doi.org/10.3390/brainsci10120964].

Mehta, V., Sharma, A., Kailkhura, P., and Malairaman, U. 2016. Antioxidant, anti-inflammatory, and antidiabetic activity of hydroalcoholic extract of Ocimun sanctum: an in-vitro and in-silico study. Asian J Pharm Clin Res, 9(5): 44-49. [https://doi.org/10.22159/ajpcr.2016.v9i5.12713].

Misrani, A., Tabassum, S. and Yang, L. 2021. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Frontiers in Aging Neuroscience, 13: 57. [https://doi.org/10.3389/fnagi.2021.617588].

Narendhirakannan, R.T., Subramanian, S. and Kandaswamy, M., 2007. Anti-inflammatory and lysosomal stability actions of Cleome gynandra L. studied in adjuvant induced arthritic rats. Food and Chemical Toxicology, 45(6): 1001-1012.

Nashaat, Y., Sabry, H. and Hassan, S.A. 2021. Evaluation of the cytotoxicity and apoptotic effects of nano triple antibiotic paste with nano anti-inflammatory drug as an intracanal medica ment. European Endodontic Journal, 6(1): 82. [https://doi.org/10.14744/eej.2020. 29292].

Nguyen, T.T., Nguyen, T.T.D., Nguyen, T.K.O. and Vo, T.K. 2021. Advances in developing therapeutic strategies for Alzheimer's disease. Biomedicine & Pharmacotherapy, 139: 111623. [https://doi.org/10.1016/j.biopha.2021.111623].

Noori, T., Dehpour, A.R., Sureda, A., Sobarzo-Sanchez, E. and Shirooie, S. 2021. Role of natural products for the treatment of Alzheimer's disease. European Journal of Pharmacology, 898: 173974. [https://doi.org/10.1016/j.ejphar.2021.173974].

Paul, S., Modak, D., Chattaraj, S., Nandi, D., Sarkar, A., Roy, J., Chaudhuri, T.K. and Bhattacharjee, S. 2021. Aloevera gel homogenate shows anti-inflammatory activity through lysosomal membrane stabilization and downregulation of TNF-α and Cox-2 gene expressions in inflammatory arthritic animals. Future Journal of Pharmaceutical Sciences, 7(1): 1-8.

Poon, H.F., Calabrese, V., Scapagnini, G. and Butterfield, D.A. 2004. Free radicals and brain aging. Clinics in Geriatric Medicine, 20(2): 329-359.

Rahman, M.S., Choi, Y.H., Choi, Y.S., Alam, M.B., Lee, S.H. and Yoo, J.C. 2018. A novel antioxidant peptide, purified from Bacillus amyloliquefaciens, showed strong antioxidant potential via Nrf-2 mediated heme oxygenase-1 expression. Food Chemistry, 239: 502-510.

Ramsden, C.E., Keyes, G.S., Calzada, E., Horowitz, M.S., Jahanipour, J., Indig, F.E., Zamora, D., Sedlock, A., Moaddel, R., Kapogiannis, D. and Maric, D. 2021. Lipid peroxidation and pathological disruption of the ApoE/Reelin-ApoER2-DAB1 axis in sporadic Alzheimer's disease in humans. Journal of Alzheimer’s Disease, 87(3): 1251-1290.

Salaria, D., Rolta, R., Sharma, N., Patel, C.N., Ghosh, A., Dev, K., Sourirajan, A. and Kumar, V. 2021. In vitro and in silico antioxidant and anti-inflammatory potential of essential oil of

Priyanka Nagu et al.

Cymbopogon citratus (DC.) Stapf. of North-Western Himalaya. Journal of Biomolecular Structure and Dynamics, 1-15. [https://doi.org/10.1080/07391102.2021.2001371]. Sarkar, B., Alam, S., Rajib, T.K., Islam, S.S., Araf, Y. and Ullah, M. 2021. Identification of the most potent acetylcholinesterase inhibitors from plants for possible treatment of Alzheimer’s disease: A computational approach. Egyptian Journal of Medical Human Genetics, 22(1): 1-20. Shahid, M., Azfaralariff, A., Law, D., Najm, A.A., Sanusi, S.A., Lim, S.J., Cheah, Y.H. and Fazry, S. 2021. Comprehensive computational target fishing approach to identify Xanthorrhizol putative targets. Scientific Reports, 11(1): 1-11. [https://doi.org/10.1038/s41598-021-81026-9]. Sharma, V.K., Singh, T.G. and Mehta, V. 2021. Stressed mitochondria: A target to intrude Alzheimer’s disease. Mitochondrion, 59, 48-57. [https://doi.org/10.1016/j.mito.2021.04.004]. Taccola, C., Barneoud, P., Cartot-Cotton, S., Valente, D., Schussler, N., Saubaméa, B., Chasseigneaux, S., Cochois, V., Mignon, V., Curis, E. and Lochus, M. 2021. Modifications of physical and functional integrity of the blood-brain barrier in an inducible mouse model of neurodegeneration. Neuropharmacology, 191: 108588. [https://doi.org/10.1016/j.neuropharm.2021.108588].

Trott, O. and Olson, A.J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2): 455-461. [https://doi.org/10.1002/jcc.21334].

Udayabanu, M., Kumaran, D., Nair, R.U., Srinivas, P., Bhagat, N., Aneja, R. and Katyal, A. 2008. Nitric oxide associated with iNOS expression inhibits acetylcholinesterase activity and induces memory impairment during acute hypobaric hypoxia. Brain Research, 1230: 138-149.

Uddin, M., Al Mamun, A., Kabir, M., Ashraf, G.M., Bin-Jumah, M.N. and Abdel-Daim, M.M. 2021. Multi-target drug candidates for multifactorial Alzheimer’s disease: AChE and NMDAR as molecular targets. Molecular Neurobiology, 58(1): 281-303.

Ullah, H.M., Zaman, S.,Juhara, F., Akter, L., Tareq, S.M., Masum, E.H. and Bhattacharjee, R. 2014. Evaluation of antinociceptive, in-vivo & in-vitro anti-inflammatory activity of ethanolic extract of Curcuma zedoaria rhizome. BMC Complementary and Alternative Medicine, 14(1): 1-12.

Walsh, S., Merrick, R., Milne, R. and Brayne, C. 2021. Aducanumab for Alzheimer’s disease? British Medical Journal, 374: n1682. [https://doi.org/10.1136/bmj.n1682]. Wang, Y. and Wu, C. 2018. Site-specific conjugation of polymers to proteins. Bio macromolecules, 19(6): 1804-1825. [https://doi.org/10.1021/acs.biomac.8b00248]. Wang, Y., Li, H., Zhang, J., Han, Y., Song, J., Wang, L., Hao, Y., He, C., Nie, J., Zhang, Q. and Lu, X. 2021. Effect of aluminum combined with ApoEε4 on Tau phosphorylation and Aβ deposition. Journal of Trace Elements in Medicine and Biology, 64: 126700. [https://doi.org/10.1016/j.jtemb.2020.126700].

World Health Organization 2021 (https://www.who.int/news-room/fact-sheets/detail/dementia). Xing, S., Li, Q., Xiong, B., Chen, Y., Feng, F., Liu, W. and Sun, H. 2021. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Medicinal Research Reviews, 41(2): 858-901.

Xiong, M., Jiang, H., Serrano, J.R., Gonzales, E.R., Wang, C., Gratuze, M., Hoyle, R., Bien-Ly, N., Silverman, A.P., Sullivan, P.M. and Watts, R.J. 2021. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Science translational medicine, 13(581): 7522. [https://doi.org/10.1126/scitranslmed.abd7522].

Yeung, A.W.K., Tzvetkov, N.T., Durazzo, A., Lucarini, M., Souto, E.B., Santini, A., Gan, R.Y., Jozwik, A., Grzybek, W., Horbańczuk, J.O. and Mocan, A. 2021. Natural products in diabetes research: Quantitative literature analysis. Natural Product Research, 35(24): 5813-5827.

Zhang, F., Zhong, R.J., Cheng, C., Li, S. and Le, W.D. 2021. New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacologica Sinica, 42(9): 1382-1389. Zhang, P. and Cui, J. 2021. Neuroprotective effect of fisetin against the cerebral ischemia reperfusion damage via suppression of oxidative stress and inflammatory parameters. Inflammation, 44(4): 1490-1506. [https://doi.org/10.1007/s10753-021-01434-x].

Published

2023-11-16

How to Cite

SCREENING OF HERBAL MOLECULES FOR THE MANAGEMENT OF ALZHEIMER’S DISORDER: In silico AND in vitro APPROACHES . (2023). Applied Biological Research, 24(3), 255–272. https://doi.org/10.48165/