LARVICIDAL EFFICACY OF LEAF EXTRACTS OF Rhanterium epapposum Oliv. AGAINST DENGUE FEVER MOSQUITO VECTOR LARVAE, Aedes aegypti L., (DIPTERA: CULICIDAE)

Authors

  • Khalid A Asiry Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdul Aziz University, P.O. Box. 80208, Jeddah (Saudi Arabia)

DOI:

https://doi.org/10.48165/

Keywords:

Botanical pesticides, dengue fever vector, ethanolic extract, mosquito control, Rhanterium epapposum

Abstract

Dengue fever, transmitted by Aedes aegypti L. (Diptera: Culicidae), is the  most important disease affecting human health and economy in the  western part of Saudi Arabia. This study aimed to investigate the  larvicidal activities of ethanolic, acetonic and aqueous extracts prepared  from the leaves of Arfaj (Rhanterium epapposum Oliv.) against dengue  fevemosquito vector, Aedes aegypti, under laboratory conditions. The  larvicidal potency ofethanolic extract at high concentration of 50000 ppm  was up to 98% after 24 h exposure. In contrast, acetonic and aqueous  extracts caused 72 and 30% larval mortality, respectively, at the same  concentration and exposure time. After 48 h exposure, the mortalities  increased by 99, 86 and 35%, respectively, for ethanolic, acetonic and  aqueous extracts. This study showed that the ethanolic extract had a  higher larvicidal effect with lower LC50 value (168.15 ppm), followed by acetone (847.75 ppm) and aqueous (2278.22 ppm) extracts after 24 h  exposure. Further studies are needed to isolate and identify the primary  component responsible for larvicidal efficiencyof this plant extract which  may give good insights for developing a sustainable mosquito control  method. 

Downloads

Download data is not yet available.

References

Al-Ghamdi, K., Khan, M.A. and Mahyoub, Z. 2009. Role of climatic factors in the seasonal abundance of Aedes aegypti L. and dengue fever cases in Jeddah province of Saudi Arabia. Current World Environment, 4(2): 307-312.

Alshehri, M.S.A. 2013. Dengue fever outburst and its relationship with climatic factors. World Applied Sciences Journal, 22(4): 506-515.

Alwafi, O.M., 2013. Dengue Fever in Makkah, Kingdom of Saudi Arabia, 2008-2012. (Master’s Dissertation, Emory University, Georgia, USA.

Leaf extracts of R. epapposum against dengue fever mosquito 93

Asiry, K.A. 2015. Aphidicidal activity of different aqueous extracts of bitter apple Citrullus colocynthis (L.) against the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae) under laboratory conditions. The Journal of Animal and Plant Sciences, 25(2): 456-462.

Asiry, K.A., Hassan, S.S.M., Ibrahim, N.A., Al-Khuraiji, I.A., Kehial, M.A., Al-Anazi, N.A., Al nasser, A.S. and Al-Shehri, A.Z. 2017. Larvicidal efficacy of ethanolic leaf extracts of four selected local plants from hail region, northern Saudi Arabia, against the dengue fever vector, Aedes aegypti (L.) under laboratory conditions. International Journal of Mosquito Research, 4(3): 81-87.

Awad, M. and Abdelwahab, A. 2016. Chemical diversity of essential oils from flowers, leaves and stems of Rhanterium epapposum Oliv. growing in northern border region in Saudi Arabia. Asian Pacific Journal of Tropical Biomedicine, 6: 767-770.

Bianca, M., Fernanda, P., Flavia, D., Danny, G., Alexis, D., and Marco, N. 2018. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to control Aedes aegypti L. (Diptera: Culicidae). Journal of Nanotechnology, 41: 1-8.

Busvine, J.R. 1971. A Critical Review of the Techniques for Testing Insecticides (2nd edn.). Commonwealth Agricultural Bureaux. Slough, UK.

Chandramohan, B., Murugan, K., Madhiyazhagan, P., Kovendan, K., Mahesh, K.P., Panneerselvam, C., Dinesh, D., Subramaniam, J., Rajaganesh, R., Nicoletti, M., Canale,A. and Benelli, G. 2016. Neem by-products in the fight against mosquito-borne diseases: Biotoxicity of neem cake fractions towards the rural malaria vector Anopheles culicifacies (Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine, 6: 472-476.

Demirci, B., Yusufoğlu, H.S., Tabanca, N., Temel, H.E., Bernier, U.R., Agramonte, N.M., Alqasoumi, S.I., Al-Rehaily, A.J., Başer, K.H.C. and Demirci, F. 2017. Rhanterium epapposum Oliv. essential oil: Chemical composition and antimicrobial, insect-repellent and anticholinesterase activities. Saudi Pharmaceutical Journal, 25: 703-708. Elimam A.M., Elmalik, K.H, and Ali, F.S. 2009. Efficacy of leaves extract of Calotropis procera Ait. (Asclepiadaceae) in controlling Anopheles arabiensis and Culex quinquefasciatus mosquitoes. Saudi Journal of Biological Sciences. 16: 95-100.

Eltahir, Z.B. and Dahab, A.A. 2019. Effectiveness of using oils extracts of Peganum harmala and Rhanterium epapposum against Khapra beetle (Coleoptera: Dermestidae) and their chemical compositions. Scientific Research and Essays Academic Journals, 14(9): 68-73.

Finney, D.J. 1971. Probit Analysis. (3rd edn). Cambridge University Press, London, UK. Ghosh, A., Chowdhury, N. and Chandra, G. 2012. Plant extracts as potential mosquito larvicides. Indian Journal of Medical Research, 135: 581-598.

Govindarajan, M. and Karuppannan, P. 2011. Mosquito larvicidal and ovicidal properties of Eclipta alba (L.) Hassk (Asteraceae) against chikungunya vector, Aedes aegypti (Linn.) (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine, 4(1): 24-28.

Hellyer, P. and Aspinall, S. 2005. The Emirates: A Natural History. Trident Press, London, UK. Howard, F.V., Adongo, E.A., Vulule, J. and Githure, J. 2011. Effects of a botanical larvicide derived from Azadirachta indica (the neem tree) on oviposition behaviour in Anopheles gambiae ss mosquitoes. Journal of Medicinal Plants Research, 5(10): 1948-1954. Ichimori, K., King, J.D., Engels, D., Yajima, A., Mikhailov, A., Lammie, P. and Ottesen, E.A., 2014. Global programme to eliminate lymphatic filariasis: the processes underlying programme success. PLoS Neglected Tropical Diseases, 8(12): p.e3328. [https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003328]. Jan, R., Asaf, S., Numan, M. and Kim, K.M. 2021. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5): 968. [https://www.mdpi.com/2073-4395/11/5/968].

Khalis A. Asiry

Kala, A., Gherraf, N., Belkacemi, D., Ladjel, S., Zellagui, A., Samir, H., Chihi, S. and Brahim, L. 2009. Composition of the essential oil of Rhanterium adpressum Coss. and Durieu. from Algeria. Archives of Applied Science Research, 1: 115-118.

Karthika, P., Vadivalagan, C., Thirumurugan, D., Kumar, R.R., Murugan, K., Canale, A. and Benelli, G., 2018. DNA barcoding of five Japanese encephalitis mosquito vectors (Culex fuscocephala, Culex gelidus, Culex tritaeniorhynchus, Culex pseudovishnui and Culex vishnui). Acta tropica, 183: 84-91.

Khater, H.F., Selim, A.M., Abouelella, G.A., Abouelella, N.A., Murugan, K., Vaz, N.P. and Govindarajan, M. 2019. Commercial mosquito repellents and their safety concerns. In: Malaria (ed. F.H. Kasenga). Malawi Adventist University, IntechOpen, London, England. [https://www.intechopen.com/chapters/68538].

Lacey, C.M. 1990. The medical importance of rice land mosquitoes and their control using alternatives to chemical insecticides. Journal of the American Mosquito Control Association, 2; 91-93.

Lui, N. 2015. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annual Review in Entomology, 60(1): 537-559.

Masotti, V., De Jong, L., Moreau, X., Rabier, J., Laffont-Schwob, I. and Thiéry, A. 2012. Larvicidal activity of extracts from Artemisia species against Culex pipiens L. mosquito: Comparing endemic versus ubiquist species for effectiveness. Comptes Rendus Biologies, 335(1): 19-25.

Mittal, P.K. and Subbarao, S.K. 2003. Prospects of using herbal products in the control of mosquito vectors. ICMR Bulletin, 33: 1-10.

Murray, N.E.A., Quam, M.B. and Wilder-Smith, A. 2013. Epidemiology of dengue: Past, present and future prospects. Clinical Epidemiology, 5: 299-309.

Navridis, K., Wipf, N., Muller, P., Traoré, M.M., Rmuller, G. and Vohn, J. 2018. Detection and monitoring of insecticide resistance mutations in Anopheles gambiae: Individual vs pooled specimens. Genes, 9: 479-459.

Omar, S.A. and Bhat, N. 2008. Alteration of the Rhanterium epapposum plant community in Kuwait and restoration measures. International Journal of Environmental Studies, 65(1): 139-55.

Panneerselvam, C., Murugan, K., Kovendan, K., Mahesh, K.P. and Subramaniam, J. 2013. Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine, 6: 102-109.

Petrie, J.M. 2007. Arabian desert primer: Ornamental potential of hyper-arid adapted plants from Saudi Arabia. Desert Plants, 23(1): 19-32.

Rajendrasozhan, S., Moll, H.E., Snoussi, M., Romeilah, R.M., Shalaby, E.A., Younes, K.M. and El Beltagi, H.S. 2021. Phytochemical screening and antimicrobial activity of various extracts of aerial parts of Rhanterium epapposum. Processes, 9(8): 1351. [https://www.mdpi.com/2227- 9717/9/8/1351].

Rasool, S., Raza, M.A., Manzoor, F., Kanwal, Z., Riaz, S., Iqbal, M.J. and Naseem, S. 2020. Biosynthesis, characterization and anti-dengue vector activity of silver nanoparticles prepared from Azadirachta indica and Citrullus colocynthis. Royal Society Open Science, 7(2): 00540. [https://doi.org/10.1098/rsos.200540]

Rozman, V., Kalinovic, I. and Korunic, Z. 2007. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored product insects. Journal of Stored Products Research, 43: 349-355.

SAS, 2009. SAS, version 9.2. SAS Institute, Cary, NC, USA.[http://support.sas.com/documentation/ cdl/en/statugstatmodel/61751/PDF/default/statugstatmodel.pdf].

Sarkar, S., Gil, J.D.B., Keeley, J. and Jansen, K., 2021. The Use of Pesticides in Developing Countries and Their Impact on Health and the Right to Food. European Union, Oxford, UK.

Leaf extracts of R. epapposum against dengue fever mosquito 95

Schou, J., Hasler, B. and Nahrstedt, B. 2006. Valuation of biodiversity effects from reduced pesticide use. Integrated Environmental Assessment and Management, 2(2): 174-181. Shaalan, E.A.S., Canyon, D., Younesc, M.W.F., Abdel-Wahab, H. and Mansoura, A.H. 2005. A review of botanical phytochemicals with mosquitocidal potential. Environment International, 31: 1149-1166.

Sukhthankar, J.H., Hemanth, K., Godinho, M.H.S. and Ashwani, K. 2014. Larvicidal activity of methanolic leaf extracts of plant, Chromolaena odorata L. (Asteraceae) against vector mosquitoes. International Journal of Mosquito Research, 1(3): 33-38.

Tang, G.W., Yang, C.J. and Xie, L.D. 2007. Extraction of Trigonella foenum-graecum L. by supercritical fluid CO2 and its contact toxicity to Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae). Journal of Pest Science, 80: 151-157.

Vivekanandhan, P., Senthil-Nathan, S. and Shivakumar, M.S. 2018. Larvicidal, pupicidal and adult smoke toxic effects of Acanthospermum hispidum (DC) leaf crude extracts against mosquito vectors. Physiology and Molecular Plant Pathology, 101: 156-162.

Wang, G., Li, C., Guo, X., Xing, D., Dong, Y., Wang, Z., Zhang, Y., Liu, M., Zheng, Z., Zhang, H. and Zhu, X., 2012. Identifying the main mosquito species in China based on DNA barcoding. PLoS ONE, 7: e47051.

WHO, 2005. Global programme to eliminate lymphatic filariasis. World Health Organization, Geneva. Weekly Epidemiological Record, 81(22): 221-232.

WHO, 2009 Dengue haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control (2nd edn.). World Health Organization, Geneva, Switzerland.

Winqvist, C., Bengtsson, J., Aavik, T., Berendse, F., Clement, L.W., Eggers, S.N., Fischer, C., Flohre, A., Geiger, F., Liira, J., Thies, T.P.R.C., Tscharntke, T., Weisser, W.W. and Bommarco, R. 2011. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across European Journal of Applied Ecology, 48: 570-579.

Yaghmai, M.S. and Kolbadipour, S. 1987. Volatile components of Rhanterium epapposum Oliv. Flavour and Fragrance Journal, 2: 29-32.

Yuan, H.Y., Liang, J., Lin, P.S., Sucipto, K., Tsegaye, M.M., Wen, T.H., Pfeiffer, S. and Pfeiffer, D., 2020. The effects of seasonal climate variability on dengue annual incidence in Hong Kong: A modelling study. Scientific Reports, 10(1): 1-10.

Zheng, X.L., 2020. Unveiling mosquito cryptic species and their reproductive isolation. Insect Molecular Biology, 29(6): 499-510.

Published

2023-11-16

How to Cite

LARVICIDAL EFFICACY OF LEAF EXTRACTS OF Rhanterium epapposum Oliv. AGAINST DENGUE FEVER MOSQUITO VECTOR LARVAE, Aedes aegypti L., (DIPTERA: CULICIDAE) . (2023). Applied Biological Research, 24(1), 87–95. https://doi.org/10.48165/