Insilico STUDIES ON ANTIMICROBIAL PEPTIDES (AMPs) FROM Calliphora vicina, THE BLOW FLY OF FORENSIC IMPORTANCE
DOI:
https://doi.org/10.48165/Keywords:
Antimicrobial peptide, Calliphora vicina, cecropinAbstract
The forensic flies colonize and feed on carcasses and cadavers and draw their nourishment from the dead and decomposed matter. They find significance in forensic studies as nutrient recyclers, disease vector and reveal association with pathogenic microorganisms. Despite their importance in forensistudies, their innate immune defense molecules like antimicrobial peptides (AMPs), have not been well characterized. Therefore, we characterized the AMPs from forensic fly, Calliphora vicina. using MSA, NCBI Tree Viewer, I-TASSER, Peptide cutter, NetPhos 3.1, Prot param Expasy insilico tools, for prediction of homology and evolutionary relationships, structure, function, potential cleavage, phosphorylation sites and physicochemical properties. We report for the first time thdifferences in the structures of C. vicina AMPs and the presence of nucleic acid-binding domain in Cecropin, at aspartic acid (D19), glutamine (Q15), histidine (H16) probably contributing to the antiviral immune responses. This in-silico study highlights the diversity of AMPs in forensic flies and reveals their indepth structural information. Further, these AMPs partially explain their association with pathogenic microorganisms.
Downloads
References
Blom, N., Gammeltoft, S. and Brunak, S. 1999. Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 294: 1351-1362. Díaz-Roa, A., Espinoza-Culupú, A., Torres-García, O., Borges, M.M., Avino, I.N., Alves, F.L., Miranda, A., Patarroyo, M.A., da Silva, P.I. Jr. and Bello, F.J. 2019. Sarconesin II, a new antimicrobial peptide isolated from Sarconesiopsis magellanica excretions and secretions. Molecules, 24: 2077. [https://doi.org/10.3390/molecules24112077].
Díaz-Roa, A., Patarroyo, M.A., Bello, F.J., Da Silva, P.I. Jr. 2018. Sarconesin: Sarconesiopsis magellanica blowfly larval excretions and secretions with antibacterial properties. Frontiers in Microbiology, 9: 2249. [doi:10.3389/fmicb.2018.02249].
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D. and Bairoch, A. 2005. Protein identification and analysis tools on the ExPASy server. pp. 571-607. In: The Proteomics Protocols Handbook (ed. J.M. Walker). Humana Press, Totowa, New Jersey, USA.
Ghosh, S. 2020a. Insilico studies on antimicrobial peptides (AMPs) from earthworm. International Journal of Peptide Research and Therapeutics, 26: 1721-1738.
Ghosh, S. 2020b. Insilico studies on antimicrobial peptide (AMP) in leeches. International Journal of Peptide Research and Therapeutics, 26: 2253-2267.
Ghosh, S., Ansar, W. and Banerjee, D. 2018. Diagnosis of crime reporter flies in forensic entomology: A review. Indian Journal of Entomology, 80: 158-176.
Gordya, N., Yakovlev, A., Kruglikova, A., Tulin, D., Potolitsina, E., Suborova, T., Bordo, D., Rosano, C. and Chernysh, S. 2017. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots. PLoS One, 12(3): e0173559. [doi: 10.1371/journal.pone.0173559].
Hore, G., Maity, A., Naskar, A., Ansar, W., Ghosh, S., Saha, G.K. and Banerjee, D.2017. Scanning electron microscopic studies on antenna of Hemipyrelli aligurriens (Wiedemann, 1830) (Diptera: Calliphoridae) - A blow fly species of forensic importance. Acta Tropica, 172: 20-28.
Junqueira, A.C.M., Ratan, A., Acerbi, E., Drautz-Moses, D.I., Premkrishnan, B.N.V., Costea, P.I., Linz, B., Purbojati, R.W., Paulo, D.F., Gaultier, N.E., Subramanian, P., Hasan, N.A., Colwell, R.R., Bork, P., Azeredo-Espin, A.M.L., Bryant, D.A. and Schuster, S.C. 2017. The microbiomes of blowflies and houseflies as bacterial transmission reservoirs. Scientific Reports, 7(1), 16324. [https://doi.org/10.1038/s41598-017-16353-x].
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. and Higgins, D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23: 2947-2948.
Lemaitre, B. and Hoffmann, J. 2007 The host defense of Drosophila melanogaster. Annual Review of Immunology, 25: 697-743.
Müller, U., Vogel, P., Alber, G. and Schaub, G.A. 2008, The innate immune system of mammals and insects. Contributions to Microbiology Home, 15: 21-44.
Pérez, C., Díaz-Roa, A., Bernal, Y., Arenas, N.E., Kalume, D.E., Côrtes, L.M.C., da Silva, P.I. Jr., Varela, Y., Patarroyo, M.A., Torres, O. and Bello, F.J. 2021. Characterizing four Sarconesiopsis magellanica (Diptera: Calliphoridae) larval fat body-derived antimicrobial peptides. Mem Inst Oswaldo Cruz. 116: e200587 [doi: 10.1590/0074-02760200587].
Rosales, C. 2017. Cellular and molecular mechanisms of insect immunity, insect physiology and ecology. IntechOpen, doi: 10.5772/67107 [https://www.intechopen.com/chapters/53789]. Roy, A., Kucukural, A. and Zhang, Y. 2010. I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738.
Ruppert, E.E., Fox, R.S. and Barnes, R.D. 2004. Invertebrate Zoology: A Functional Evolutionary Approach (7th edn.). Cengage Learning, Delhi, India.
Schneider, D.S. 2007. How and why does a fly turn its immune system off? PLoS Biology., 5(9): e247. [https://doi.org/10.1371/journal.pbio.0050247].
Tomberlin, J.K., Crippen, T.L., Aaron Tarone, M., Chaudhury, M.F.B., Singh, B., Cammack, J.A. and Meisel, R.P. 2016. A review of bacterial interactions with blow flies (Diptera: Calliphoridae) of medical, veterinary and forensic importance. Annals of the Entomological Society of America, 110(1): 19-23.