LARVICIDAL ACTIVITY OF HEXANE-EXTRACTS OF Cinnamomum cassia and Zingiber officinale AND THEIR COMBINATION AGAINST Culex pipiens (DIPTERA: CULICIDAE)

Authors

  • Nael Abutaha Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh - 11451 (Saudi Arabia)
  • Fahd A Al-mekhlafi Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh - 11451 (Saudi Arabia)
  • Khalid Elfaki Ibrahim Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh - 11451 (Saudi Arabia)
  • Mohamed A Wadaan Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh - 11451 (Saudi Arabia)

DOI:

https://doi.org/10.48165/

Keywords:

Cinnamomum cassia, Culex pipiens, combination effect, hemolysis, larvicide, Zingiber officinale

Abstract

Botanical products are encouraged for mosquito control because of their  low cost, rapid degradation, and low toxicity. The hexane extracts of  Cinnamomum cassia (C) and Zingiber officinale (Z) were assessed alone or  in combination on the 3rd instar of Culex pipiens. The LC50 values of C.  cassia and Z. officinale against Cx. pipiens were 317.61 and 269.4 µg mL-1,  respectively. The Z75%: C25% ratio was the most promising among the  different combinationtested, with IC50 value of 251.76 µg mL-1. The  histological sections of extract-treated larvae (C25%: Z75%) induced  degeneration of epithelial cells, degradation of microvilli, and loss of  nuclei. Antioxidant activity and phenolic content of Z. officinale hexane  extract showed a linear relationship. Z. officinale extract at 60.5 µg mL-1 possessed the highest hemolytic activity (73.9 ± 0.5%). Our results revealed  that the combined hexane extracts of C. cassia and Z. officinale provided  promising larvicidal action against Cx. pipiens. 

Downloads

Download data is not yet available.

References

Abutaha, N.M., Farooq, M.F., Mohammed, A.-Z., Alotaibi, A., Cordero, M.A.W., Bepari, A. and Alarifi, S. 2021. Cytotoxic activity and toxicity study of HF8, a poly-herbal formulation. Journal of King Saud University of Science, 33(3): 101377 [https://doi.org/10.1016/j.sjbs.2021.08.101].

Abutaha, N., Al-zharani, M., Al-Doaiss, A.A., Baabbad, A., Al-Malki, A.M. and Dekhil, H. 2020. Anticancer, antioxidant, and acute toxicity studies of a Saudi polyherbal formulation, PHF5. Open Chemistry, 18(1): 472-481.

Al-Mehmadi, R.M. and Al-Khalaf, A.A. 2010. Larvicidal and histological effects of Melia azedarach extract on Culex quinquefasciatus Say larvae (Diptera: Culicidae). Journal of King Saud University of Science, 22(2): 77-85.

Al-Mekhlafi, F.A., Abutaha, N., Al-Doaiss, A.A., Al-Keridis, L.A., Alsayadi, A.I., Mohamed, R.A.E.H., Wadaan, M.A., Ibrahim, K.E. and Al-Khalifa, M.S. 2021. Target and non-target effects of Foeniculum vulgare and Matricaria chamomilla combined extract on Culex pipiens mosquitoes. Saudi Journal of Biological Sciences, 28: 5773-5780

Al Ashry, H., Kenawy, M.A. and Shobrak, M. 2018. Ecological aspects of the Bancroftian filariasis vectors, Culex pipiens and Cx. quinquefasciatus (Diptera: Culicidae) in Hail. Saudi Arabia. International Journal of Mosquito Research, 5: 25-32.

Al Ashry, H.A., Kenawy, M.A. and Shobrak, M. 2014. Fauna of mosquito larvae (Diptera: Culicidae) in Asir provence, Kingdom of Saudi Arabia. Journal of the Egyptian Society of Parasitology, 44(1): 171-184.

Alghamdi, A.G. 2021. Toxicological and biological effects of some plant extracts on the house mosquito Culex pipiens, the dominant species in Jeddah governorate. Entomological Research, 51(8): 403-412.

Assar, A. and El-Sobky, M. 2003. Biological and histopathological studies of some plant extracts on larvae of Culex pipiens (Diptera: Culicidae). Journal of the Egyptian Society of Parasitology, 33(1): 189-200.

Brown, M.R., Raikhel, A.S. and Lea, A.O. 1985. Ultrastructure of midgut endocrine cells in the adult mosquito, Aedes aegypti. Tissue and Cell, 17(5): 709-721.

de Carvalho, G.H.F., de Andrade, M.A., de Araújo, C.N., Santos, M.L., de Castro, N.A., Charneau, S., Monnerat, R., de Santana, J.M. and Bastos, I.M.D. 2019. Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors. Environmental Science and Pollution Research, 26(6): 5514-5523.

Ffrench-Constant, R.H., Williamson, M.S., Davies, T.E. and Bass, C. 2016. Ion channels as insecticide targets. Journal of Neurogenetics, 30(3-4): 163-177.

Larvicidal activity of Cinnamomum Cassia and Zingiber Officinale against Culex pipiens 15

Ghosh, T., Biswas, M., Chatterjee, S. and Roy, P. 2018. In vitro study on the hemolytic activity of different extracts of Indian medicinal plant Croton bonplandianum with phytochemical estimation: A new era in drug development. Journal of Drug Delivery and Therapeutics, 8(4): 155-160.

Gill, H.K. and Garg, H. 2014. Pesticide: Environmental impacts and management strategies. Pesticides-toxic Aspects, 8: p.187.

Gubler, D. 2009. Vector-borne diseases. Revue Scientifique et Technique (International Office of Epizootics), 28(2): 583-588.

Hussien, K. and Shoukry, F. 1997. Toxicological and histopathological studies of certain plant fixed oils on Cx. pipiens larvae. Ain Shams Scientific Bulletin, 35: 287-305.

Isman, M.B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51: 45-66.

Jones, R.T., Ant, T.H., Cameron, M.M. and Logan, J.G. 2021. Novel control strategies for mosquito borne diseases. Philosophical Transactions of the Royal Society B, 376(1818): 20190802 [https://doi.org/10.1098/rstb.2019.0802].

Kalyanasundaram, M. and Das, P.K. 1985. Larvicidal and synergistic activity of plant extracts for mosquito control. Indian Journal of Medical Research, 82(1): 19-23.

Lum, K.Y., Tay, S.T., Le, C.F., Lee, V.S., Sabri, N.H., Velayuthan, R.D., Hassan, H. and Sekaran, S.D. 2015. Activity of novel synthetic peptides against Candida albicans. Scientific Reports, 5(1): 1-12.

Mdoe, F.P., Cheng, S.S., Lyaruu, L., Nkwengulila, G., Chang, S.T. and Kweka, E.J. 2014. Larvicidal efficacy of Cryptomeria japonica leaf essential oils against Anopheles gambiae. Parasites and Vectors, 7(1): 1-6.

Mo’awia Mukhtar Hassan, N.D., Al-Atawi, A.A.-S., Kaabi, M.A.M.M., Alatawi, S.S.E., Haider, N.A.H. and Al-Atawi, A.A.M. 2020. Characterization and distribution of larval habitats of Culex pipiens complex (Diptera: Culicidae) vectors of West Nile virus in Tabuk town, Saudi Arabia. International Journal of Mosquito Research, 7(5): 60-68.

Mohan, L., Sharma, P. and Srivastava, C. 2010. Combination larvicidal action of Solanum xanthocarpum extract and certain synthetic insecticides against filarial vector, Culex quinquefasciatus(Say). Southeast Asian Journal of Tropical Medicine and Public Health, 41(2): 311-319.

Muturi, E.J., Ramirez, J.L., Zilkowski, B., Flor-Weiler, L.B. and Rooney, A.P. 2018. Ovicidal and larvicidal effects of garlic and asafoetida essential oils against West Nile virus vectors. Journal of Insect Science, 18(2): 1-6.

Namdee, K., Carrasco-Teja, M., Fish, M., Charoenphol, P. and Eniola-Adefeso, O. 2015. Effect of variation in hemorheology between human and animal blood on the binding efficacy of vascular targeted carriers. Scientific Reports, 5(1): 1-14.

Nisbet, A.J. 2000. Azadirachtin from the neem tree Azadirachta indica: Its action against insects. Anais da Sociedade Entomológica do Brasil, 29: 615-632.

Nishiura, J.T., Ho, P. and Ray, K., 2003. Methoprene interferes with mosquito midgut remodeling during metamorphosis. Journal of Medical Entomology, 40(4): 498-507.

NRC. 1986. Pesticide Resistance: Strategies And Tactics For Management. National Research Council,National Academies Press, Kinokuniya , Japan.

Obame-Engonga, L., Sima-Obiang, C., Ngoua-Meye-Misso, R., Orango, B., Ondo, J. and Ndong Atome, G., 2017. Larvicidal and ovicidal properties against Anopheles gambiae, antioxidant and antibacterial activities of the combination of essential oils Eucalyptus citriodora, Cymbopogon giganteus and Cymbopogon nardus from Gabon. Journal of Multidisciplinary Engineering Science and Technology, 4(8): 7887-7894.

Peng, Z., Beckett, A.N., Engler, R.J., Hoffman, D.R., Ott, N.L. and Simons, F.E. 2004. Immune responses to mosquito saliva in 14 individuals with acute systemic allergic reactions to mosquito bites. The Journal of Allergy and Clinical Immunology, 114 (5): 1189-1194.

Nael Abutaha et al.

Procópio, T.F., Fernandes, K.M., Pontual, E.V., Ximenes, R.M., de Oliveira, A.R.C., Souza, C.d.S., Melo, A.M.M.d.A., Navarro, D.M.d.A.F., Paiva, P.M.G. and Martins, G.F. 2015. Schinus terebinthifolius leaf extract causes midgut damage, interfering with survival and development of Aedes aegypti larvae. PLoS One, 10(5): e0126612. [https://doi.org/10.1016/j.ecoenv.2017.01.046].

Rehman, S., Ali, Z., Khan, M., Bostan, N. and Naseem, S. 2019. The dawn of phage therapy. Reviews in Medical Virology, 29(4): e2041 [https://doi.org/10.1002/rmv.2041]. Senthil-Nathan, S. 2020. A review of resistance mechanisms of synthetic insecticides and botanicals,

phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Frontiers in Physiology, 10: 1591. [https://doi.org/10.3389/fphys.2019.01591].

Shoukat, R.F., Shakeel, M., Rizvi, S.A.H., Zafar, J., Zhang, Y., Freed, S., Xu, X. and Jin, F. 2020. Larvicidal, ovicidal, synergistic, and repellent activities of Sophora alopecuroides and its dominant constituents against Aedes albopictus. Insects, 11(4): 246.

Takken, W. and Knols, B.G. 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annual Review of Entomology, 44(1): 131-157.

Thenmozhi, V., Mariappan, T., Krishnamoorthy, R., Baskarn, G., Krishnamoorthi, R., Balaji, T. and Tyagi, B. 2014. A first note on Japanese encephalitis virus isolation from Culex quinquefasciatus Say in Northern West Bengal. International Journal of Mosquito Research, 1(1): 1-4.

Thomas, A., Mazigo, H.D., Manjurano, A., Morona, D. and Kweka, E.J., 2017. Evaluation of active ingredients and larvicidal activity of clove and cinnamon essential oils against Anopheles gambiae (sensu lato). Parasites and Vectors, 10(1): 1-7.

Vimaladevi, S., Mahesh, A., Dhayanithi, B.N. and Karthikeyan, N. 2012. Mosquito larvicidal efficacy of phenolic acids of seaweed Chaetomorpha antennina (Bory) Kuetz. against Aedes aegypti. Biologia, 67(1): 212-216.

Vinogradova, E.B. 2000. Culex Pipiens Pipiens Mosquitoes: Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance And Control. Pensoft Publishers, Sofia, Bulgaria. Virtanen, J.A., Cheng, K.H. and Somerharju, P. 1998. Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proceedings of the National Academy of Sciences, 95(9): 4964-4969.

Williamson, E.M. 2001. Synergy and other interactions in phytomedicines. Phytomedicine, 8(5): 401- 409.

Younoussa, L., Kenmoe, F., Oumarou, M.K., Batti, A.C.S., Tamesse, J.L. and Nukenine, E.N. 2020. Combined effect of methanol extracts and essential oils of Callistemon rigidus (Myrtaceae) and Eucalyptus camaldulensis (Myrtaceae) against Anopheles gambiae Giles larvae (Diptera: Culicidae). International Journal of Zoology, 2020, Article ID 4952041, pages 9 [https://doi.org/10.1155/2020/4952041].

Published

2023-11-16

How to Cite

LARVICIDAL ACTIVITY OF HEXANE-EXTRACTS OF Cinnamomum cassia and Zingiber officinale AND THEIR COMBINATION AGAINST Culex pipiens (DIPTERA: CULICIDAE) . (2023). Applied Biological Research, 24(1), 8–16. https://doi.org/10.48165/