FUNCTIONAL METATRANSCRIPTOMICS REVEALS A NOVEL MULTI METAL TOLERANT GENE OF NRAMP-FAMILY, ISOLATED FROM METAL-CONTAMINATED SOIL

Authors

  • Bhupendra Narayan Singh Yadav Molecular Biology and Genetic Engineering Laboratory, Department of Botany, Faculty of Science, University of Allahabad, Prayagraj-211 002, Uttar Pradesh (India)
  • Priyanka Sharma Molecular Biology and Genetic Engineering Laboratory, Department of Botany, Faculty of Science, University of Allahabad, Prayagraj-211 002, Uttar Pradesh (India)
  • Shristy Maurya Molecular Biology and Genetic Engineering Laboratory, Department of Botany, Faculty of Science, University of Allahabad, Prayagraj-211 002, Uttar Pradesh (India)
  • Rajiv Kumar Yadav Molecular Biology and Genetic Engineering Laboratory, Department of Botany, Faculty of Science, University of Allahabad, Prayagraj-211 002, Uttar Pradesh (India)

DOI:

https://doi.org/10.48165/abr.2024.26.01.22

Keywords:

cDNA clone, metal homeostasis, metal transport, Nramp family, soil, micro-eukaryotes

Abstract

 

The continuous release of heavy metal pollutants into soil through human  activities posesthreat to both macro- and micro-organisms within the ecosystem.  Functional metatranscriptomics is a robust method for discovering novel genes  associated with a particular biological process. In this study, functional meta transcriptomic approach was employed to isolate a gene from size-fractionated  cDNA libraries of micro-eukaryotes. The cDNA libraries were raised using  high-quality RNA from heavy metal-contaminated soil. The identified gene  aligned with Nramp (Natural resistance associated macrophage protein)  family. The gene, JMC-10, was submitted to GenBank under Accession No.  OR882126, and it encodes a protein with high sequence similarity to other  Nramp family members, including Smf1p, Smf2p, and Smf3p in  Saccharomyces cerevisiae. To study the function of JMC-10 gene, a series of  growth assays were conducted in yeast cells that either overexpressed JMC-10  or carried a deletion of gene. The study revealed the putative role of JMC-10 in  the transportation of divalent metal ions, including iron, manganese, zinc and  cadmium. Notably, the overexpression of JMC-10 was induced by exposure to  toxic levels of cadmium, suggesting it’s potential role in metal detoxification.  The study provides new intuitions into the roles of Nramp family in metal  homeostasis and highlights the potentiality of functional metatranscriptomics  for identifying new genes having crucial roles in complex biological processes.  Further, it may serve as a biomarker for identifying metal pollution. 

Downloads

Download data is not yet available.

References

Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K. and Narasimhan, G. 2016. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evolutionary Bioinformatics, 12(S1): 5-16.

Amaechi, M. and Onwuka, S.U. 2021. Determination of the presence and level of heavy metals in soils of automobile workshops in Awka, Anambra State. European-American Journals, 9(3): 18–32.

Bailly, J., Fraissinet-Tachet, L., Verner, M.C., Debaud, J.C., Lemaire, M. and Wésolowski-Louvel, M. 2007. Soil eukaryotic functional diversity, a metatranscriptomic approach. International Society for Microbial Ecology, 1(7): 632-642.

Bashiardes, S., Zilberman-Schapira, G. and Elinav, E. 2016. Use of metatranscriptomics in microbiome research. Bioinformatics and Biology Insights, 10: 19-25.

Bellingham, S.A., Guo, B. and Hill, A.F. 2015. The secret life of extracellular vesicles in metal homeostasis and neurodegeneration. Biology of the Cell, 107(11): 389-418. https://doi.org/10.1111/boc.201500030

Berg, J., Brandt, K.K., Al-Soud, W.A., Holm, P.E., Hansen, L.H., Sørensen, S.J. and Nybroe, O. 2012. Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure. Applied and Environmental Microbiology, 78(20): 7438- 7446.

Blaby-Haas, C.E. and Merchant, S.S. 2014. Lysosome-related organelles as mediators of metal homeostasis. Journal of Biological Chemistry, 289(41): 28129–28136.

Cechin, A.L., Sinigaglia, M., Lemke, N., Echeverrigaray, S., Cabrera, O.G., Pereira, G.A.G. and Mombach, J.C.M. 2008. Cupin: A candidate molecular structure for the Nep1-like protein family. BMC Plant Biology, 8: 50. [https://doi.org/10.1186/1471-2229-8-50].

Cozzetto, D., Minneci, F., Currant, H. and Jones, D.T. 2016. FFPred 3: Feature-based function prediction for all gene ontology domains. Scientific Reports, 6: 31865. [https://doi.org/10.1038/ srep31865].

Dziewit, L. and Drewniak, L. 2016. Heavy metals resistance, metabolism and transformation genomic, metagenomic and metatranscriptomic studies. pp. 13-26: In: Microbial Bio degradation: from Omics to Function and application (ed. J. Długoński), Caister Academic Press, UK. [https://doi.org/10.21775/9781910190456.02].

Garbisu, C. and Alkorta, I. 2003. Basic concepts on heavy metal soil bioremediation. European Journal of Mineral Processing and Environmental Protection, 3(1): 58-66.

Gietz, R.D. and Schiestl, R.H. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols, 2(1): 31-34.

Giner-Lamia, J., Pereira, S.B., Bovea-Marco, M., Futschik, M.E., Tamagnini, P. and Oliveira, P. 2016. Extracellular proteins: Novel key components of metal resistance in vyanobacteria? Frontiers in Microbiology, 7: 878. [https://doi.org/10.3389/fmicb.2016.00878].

Goswami, T., Bhattacharjee, A., Babal, P., Searle, S., Moore, E., Li, M. and Blackwell, J.M. 2001. Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochemical Journal, 354(3): 511-519.

Hua, Z.S., Han, Y.J., Chen, L.X., Liu, J., Hu, M., Li, S.J., Kuang, J., Chain, P.S.G., Huang, L. and Shu, W. 2015. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. International Society for Microbial Ecology, 9(6):1280-1294.

Huang, Y., Wang, L., Wang, W., Li, T., He, Z. and Yang, X. 2019. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Science of The Total Environment, 651: 3034-3042.

Kitson, R.E. and Mellon, M.G. 1944. Colorimetric determination of phosphorus as molybdivanadophosphoric acid. Industrial & Engineering Chemistry Analytical Edition, 16(6): 379-383.

Liljeqvist, M., Ossandon, F.J., González, C., Rajan, S., Stell, A., Valdes, J., Holmes, D.S. and Dopson, S. 2015. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiology Ecology, 91(4): fiv011. [https://doi.org/10.1093/femsec/fiv011].

Liu, J., Chang, W., Pan, L., Liu, X., Su, L., Zhang, W., Li, Q. and Zheng, Y. 2018. An improved method of preparing high efficiency transformation Escherichia coli with both plasmids and larger DNA fragments. Indian Journal of Microbiology, 58(4): 448-456.

Marmeisse, R., Kellner, H., Fraissinet-Tachet, L. and Luis, P. 2017. Discovering protein-coding genes from the environment: time for the eukaryotes? Trends in Biotechnology, 35(9): 824-835. Minet, M., Dufour, M.E. and Lacroute, F. 1992. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. The Plant Journal, 2(3): 417-422. Mori, T., Nagai, Y., Kawagishi, H. and Hirai, H. 2018. Functional characterization of the manganese transporter smf2 homologue gene, PsMnt, of Phanerochaete sordida YK-624 via homologous overexpression. FEMS Microbiology Letters, 365: 8. [https://doi.org/10.1093/femsle/fny050].

Nevo, Y. and Nelson, N. 2006. The NRAMP family of metal-ion transporters. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1763: 609-620.

Nugent, T. and Jones, D.T. 2009. Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics, 10: 159. [https://doi.org/10.1186/1471-2105-10-159]. Nunes, I., Jacquiod, S., Brejnrod, A., Holm, P.E., Johansen, A., Brandt, K.K., Priemé, A. and Sørensen, S.J. 2016. Coping with copper: Legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microbiology Ecology 92(11): fiw175. [https://doi.org/10.1093/femsec/fiw175].

Olsen, S.R. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. United States Department of Agriculture, Washington, USA.

Osmani, M., Bani, A. and Belinda, H. 2015. Heavy metal and nickel phyto-extraction in the metallurgical area soils in Elbasan. Albanian Journal of Agricultural Science, 14(4): 414-419. Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E. and Larsson, D.G.J. 2014. BacMet: Antibacterial biocide and metal resistance genes database. Nucleic Acids Research, 42: 737- 743.

Patzer, S.I. and Hantke, K. 2001. Dual repression by Fe2+-Fur and Mn2+-MntR of the mntH gene, encoding an NRAMP-like Mn2+ transporter in Escherichia coli. Journal of Bacteriology, 183(16): 4806-4813.

Piper, C.S. 1966. Soil and Plant Analysis. Hans Publishers, Bombay, India.

Portnoy, M.E., Liu, X.F. and Culotta, V.C. 2000. Saccharomyces cerevisiae expresses three functionally distinct homologues of the Nramp family of metal transporters. Molecular and Cellular Biology. 20: 7893-7902.

Pottier, M., Oomen, R., Picco, C., Giraudat, J., Scholz-Starke, J., Richaud, P., Carpaneto, A. and Thomine, S. 2015. Identification of mutations allowing natural resistance associated macro phage proteins (NRAMP) to discriminate against cadmium. The Plant Journal, 83(4): 625–637.

Srivastava, G.P., Singh, M. and Yadav, D.K. 2022. In silico protein-interactome analysis and gene expression profiling of rice G-protein coupled receptor-homolog. Biochemical and Cellular Archives, 23: 157-162.

Srivastava, G.P., Yadav, N., Yadav, B.N.S., Yadav, R.K. and Yadav, D.K. 2020. Pan-interactomics and its applications. pp. 397-435. In: Pan-Genomics: Applications, Challenges, and Future Prospects (eds. D. Barh, S. Soares, S. Tiwari and V. Azevedo), Academic Press, London, UK. [https://doi.org/10.1016/B978-0-12-817076-2.00021-4].

Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1):607-613. https://doi.org/10.1093/nar/gky1131

Tang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G., Wu, S. and Wang, Y. 2023. SRplot: A free online platform for data visualization and graphing. PLoS One, 18(11): e0294236. [https://doi.org/10.1371/journal.pone.0294236].

Thakur, B., Yadav, R., Fraissinet-Tachet, L., Marmeisse, R. and Reddy, M.S. 2018. Isolation of multi-metal tolerant ubiquitin fusion protein from metal polluted soil by metatranscriptomic approach. Journal of Microbiological Methods. 152: 119-125.

Thakur, B., Yadav, R.K., Vallon, L., Marmeisse, R., Fraissinet-Tachet, L. and Reddy, M.S. 2019. Multi-metal tolerance of von Willebrand factor type D domain isolated from metal contamin ated site by metatranscriptomics approach. Science of the Total Environment, 661: 432-440.

Thomas, R. 2008. Practical Guide to ICP-MS: A Tutorial for Beginners (2nd Edn.). CRC Press, Boca Raton, USA [https://doi.org/10.1201/9781420067873].

Walkley, A. 1947. A critical examination of a rapid method for determining organic carbon in soils - Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4): 251-264.

Wang, J., Chitsaz, F., Derbyshire, M.K., Gonzales, N.R., Gwadz, M., Lu, S., Marchler, G.H., Song, J.S., Thanki, N., Yamashita, R.A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C.J. and Marchler-Bauer, A. 2023. The conserved domain database in 2023. Nucleic Acids Research, 51(D1): 384-388.

Wu, A., Wemmie, J.A., Edgington, N.P., Goebl, M., Guevara, J.L., and Moye-Rowley, W.S. 1993. Yeast bZip proteins mediate pleiotropic drug and metal resistance. Journal of Biological Chemistry, 268(25): 18850-18858. [https://doi.org/10.1016/S0021-9258(17)46705-6].

Wu, D., Saleem, M., He, T., and He, G. 2021. The mechanism of metal homeostasis in plants: A new view on the synergistic regulation pathway of membrane proteins, lipids and metal ions. Membranes, 11(12): 984. [https://doi.org/10.3390/membranes11120984].

Yadav, B.N.S., Sharma, P., Maurya, S. and Yadav, R.K. 2023. Metagenomics and meta transcriptomics as potential driving forces for the exploration of diversity and functions of micro-eukaryotes in soil. 3Biotech, 13: 423. [https://doi.org/10.1007/s13205-023-03841-3].

Yadav, R.K., Barbi, F., Ziller, A., Luis, P., Marmeisse, R., Reddy, M.S. and Laurence, F. 2014. Construction of sized eukaryotic cDNA libraries using low input of total environmental meta transcriptomic RNA. BMC Biotechnology, 14(1): 80-86.

Yang, Y., Zheng, J., Liang, Y., Wang, X., Li, K., Chen, L., Aduragbemi, A., Han, Y., Sun, Z., Li, H. and Hou, S. 2023. Natural resistance-associated macrophage protein (Nramp) family in foxtail millet (Setaria italica): Characterization, expression analysis and relationship with metal content under Cd stress. Agronomy, 13(8): 2000. [https://doi.org/10.3390/agronomy13082000].

Published

2024-05-30

How to Cite

FUNCTIONAL METATRANSCRIPTOMICS REVEALS A NOVEL MULTI METAL TOLERANT GENE OF NRAMP-FAMILY, ISOLATED FROM METAL-CONTAMINATED SOIL . (2024). Applied Biological Research, 26(2), 186–198. https://doi.org/10.48165/abr.2024.26.01.22