ROLE OF HIGH-TEMPERATURE PROTEIN G IN THE VIRULENCE AND DEVELOPMENT OF ANTIMICROBIAL RESISTANCE IN SOME ORAL BACTERIAL ISOLATES

Authors

  • Jyoti M Patki School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai CBD Belapur, Navi Mumbai - 400 614, Maharashtra (India)
  • Shruti Purohit School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai CBD Belapur, Navi Mumbai - 400 614, Maharashtra (India)

DOI:

https://doi.org/10.48165/abr.2024.26.01.20

Keywords:

Antibiotic susceptibility, biofilm, geldanamycin, HtpG, oral isolates, thermotolerance

Abstract

A marked increase in antimicrobial resistance among common bacterial  pathogens has made the search for new therapeutic targets highly imperative.  The present study was aimed to analyse the potential of bacterial chaperone  high-temperature protein G (HtpG) as a therapeutic target by determining its  role in virulence and antibiotic resistance. Two bacterial isolates obtained from  the oral cavity of healthy human subjects were characterized and tentatively identified as Staphylococcus aureus and Streptococcus mutans. Survival assays of  these isolates showed induction of thermotolerance with around 24% increase in  survival at lethal temperature after preconditioning. Protein profile studies  revealed prominent expression of proteins of 99, 77 and 40 kDa in thermo tolerance group as compared to the control. HtpG inhibition was achieved by  using a pharmacological inhibitor of human Hsp90, geldanamycin (GA). In disc  diffusion assays, there was no significant inhibitory impact of HtpG on antibiotic  susceptibility to six antimicrobial compounds in both the isolates as compared  to the control. An 18-19% reduction in biofilm-forming capacity was observed  for both isolates after GA treatment. This study lays strong experimental  evidence to the involvement of HtpG in the development of anti-microbial  resistance through biofilm formation. 

Downloads

Download data is not yet available.

References

Alam, A., Bröms, J.E., Kumar, R. and Sjöstedt, A. 2021. The role of ClpB in bacterial stress responses and virulence. Frontiers in Molecular Biosciences, 8: 668910 [https://doi.org/10.3389/ fmolb.2021.668910].

Arita-Morioka, K.I., Yamanaka, K., Mizunoe, Y., Ogura, T. and Sugimoto, A.S. 2015. A novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrobial Agents and Chemotherapy, 59(1): 633-641.

Banin, E., Hughes, D. and Kuipers, O.P. 2017. Editorial: Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiology Reviews, 41(3): 450-452.

Bergey, D.H. and Holt, J.G. 2000. Bergey’s Manual of Determinative Bacteriology (9th edn.). Lippincott Williams & Wilkins, Philadelphia, USA.

Buchner, J. 2010. Bacterial Hsp90 - Desperately seeking clients. Molecular Microbiology, 76(3): 540- 544.

Bauer, A.W., Kirby, W.M.M., Sherris, J.C. and Turk, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45: 493-496. Chen, X., Daliri, E.B.M., Chelliah, R. and Oh, D.H. 2020. Isolation and identification of potentially pathogenic microorganisms associated with dental caries in human teeth biofilms. Microorganisms, 8(10): 1-12.

Chiappori, F., Fumian, M., Milanesi, L. and Merelli, I. 2015. DnaK as antibiotic target: Hot spot residues analysis for differential inhibition of the bacterial protein in comparison with the human HSP70. PLoS One, 10(4): e0124563 [doi: 10.1371/journal.pone.0124563].

Christensen, G.D., Simpson, W.A., Bisno, A.L. and Beachey, E.H. 1982. Adherence of slime– producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity 37: 318-326.

Dong, T., Wang, W., Xia, M., Liang, S., Hu, G., Ye, H., Cao, Q., Dong, Z., Zhang, C., Feng, D. and Zuo, J. 2021. Involvement of the heat shock protein HtpG of Salmonella typhimurium in infection and proliferation in hosts. Frontiers in Cellular and Infection Microbiology, 11: 1-14.

Jyoti M. Patki and Shruti Purohit

Fay, A., Philip, J., Saha, P., Hendrickson, R.C., Glickman, M.S. and Burns-Huang, K. 2021. The Dnak chaperone system buffers the fitness cost of antibiotic resistance mutations in mycobacteria. MBio, 1B2(2): [https://doi.org/10.1128/mBio.00123-21].

Garcie, C., Tronnet, S., Garénaux, A., McCarthy, A.J., Brachmann, A.O., Pénary, M., Houle S., Nougayrède, J.P., Piel, J., Taylor, P.W., Dozois, C.M., Genevaux, P., Oswald, E. and Martin, P. 2016. The bacterial stress-responsive Hsp90 chaperone (HtpG) is required for the production of the genotoxin, colibactin and the siderophore yersiniabactin in Escherichia coli. Journal of Infectious Diseases, 214(6): 916-924,

Genest, O., Hoskins, J.R., Camberg, J.L., Doyle, S.M. and Wickner, S. 2011. Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proceedings of the National Academy of Sciences of the United States of America, 108(20): 8206- 8221.

Goltermann, L., Good, L. and Bentin, T. 2013. Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli. Journal of Biological Chemistry, 288(15): 10483-10489.

Gouesbet, G., Jan, G. and Boyaval, P. 2001. Lactobacillus delbrueckii ssp. bulgaricus thermotolerance. Le Lait. 81(1-2): 301-309.

Grudniak, A.M., Klecha, B. and Wolska, K.I. 2018. Effects of null mutation of the heat-shock gene htpG on the production of virulence factors by Pseudomonas aeruginosa. Future Microbiology, 13(1): 69-80.

Hosfelt, J., Richards, A., Zheng, M., Adura, C., Nelson, B., Yang, A., Fay, A., Resager, W., Ueberheide, B., Glickman, J.F. and Lupoli, T.J. 2021. An allosteric inhibitor of bacterial Hsp70 chaperone potentiates antibiotics and mitigates resistance. Cell Chemical Biology, 29(5): 854- 869.

Lghamdi, S. 2022. Isolation and identification of the oral bacteria and their characterization for bacteriocin production in the oral cavity. Saudi Journal of Biological Sciences, 29(1): 318-323. Jain, K., Parida, S., Mangwani, N., Dash, H.R. and Das, S. 2013. Isolation and characterization of biofilm-forming bacteria and associated extracellular polymeric substances from oral cavity. Annals of Microbiology, 63(4): 1553-1562.

Jana, B. and Biswas, I. 2020. Significance of individual domains of Clpl: A novel chaperone from Streptococcus mutans. Biochemistry, 59(36): 3368-3379.

Jiao, Y., Tay, F.R., Niu, L. na. and Chen, J. hua. 2019. Advancing antimicrobial strategies for managing oral biofilm infections. International Journal of Oral Science, 11(3): 28. [https://doi.org/10.1038/s41368-019-0062-1].

Kim, G.Y. and Lee, C.H. 2015. Antimicrobial susceptibility and pathogenic genes of Staphylococcus aureus isolated from the oral cavity of patients with periodontitis. Journal of Periodontal and Implant Science, 45(6): 223-228.

Klein, K., Sonnabend, M.S., Frank, L., Leibiger, K., Franz-Wachtel, M., Macek, B., Trunk, T., Leo, J.C., Autenrieth, I.B., Schütz, M. and Bohn, E. 2019. Deprivation of the periplasmic chaperone SurA reduces virulence and restores antibiotic susceptibility of multidrug-resistant Pseudomonas aeruginosa. Frontiers in Microbiology, 10: 100 [https://doi.org/10.3389/fmicb.2019.00100].

Kuang, X., Chen, V. and Xu, X. 2018. Novel approaches to the control of oral microbial biofilms. BioMed Research International, 2018: 1-13 [https://doi.org/10.1155/2018/6498932]. Kumar, A. and Balbach, J. 2017. Targeting the molecular chaperone SlyD to inhibit bacterial growth with a small molecule. Scientific Reports, 7: 1-10 [https://doi.org/10.1038/srep42141]. Krzyściak, W., Jurczak, A., Kościelniak, D., Bystrowska, B. and Skalniak, A. 2014. The virulence of Streptococcus mutans and the ability to form biofilms. European Journal of Clinical Microbiology and Infectious Diseases, 33(4): 499-515.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259): 680-685.

Lemos, J.A.C. and Burne, R.A. 2002. Regulation and physiological significance of ClpC and ClpP in

HtpG: New therapeutic target for controlling dental biofilms 179

Streptococcus mutans. Journal of Bacteriology, 184(22): 6357-6366.

Li, H. and Gänzle, M. 2016. Some like it hot: Heat resistance of Escherichia coli in food. Frontiers in Microbiology, 7: 1-12. [https://doi.org/10.3389/fmicb.2016.01763].

Lowe, J. 1982. Mechanisms of antibiotic resistance. Annual Reports in Medicinal Chemistry, 17(C): 119-127.

Lowry, O.H., Rosenbrough, N.J., Far, A.L. and Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 193: 265-275.

Maleki, F., Khosravi, A., Nasser, A., Taghinejad, H. and Azizian, M. 2016. Bacterial heat shock protein activity. Journal of Clinical and Diagnostic Research, 10(3): 1-3. [https://doi.org/10.7860/JCDR/2016/14568.7444].

Neckers, L. and Tatu, U. 2008. Molecular chaperones in pathogen virulence: Emerging new targets for therapy. Cell Host and Microbe, 4(6): 519-527.

Patki, J.M. and Shah, P. 2017. Screening of neem extracts for microbial anti-chaperone activity by employing in vitro enzyme refolding assay. 3 Biotech., 7(5): 1-8. [https://doi.org/10.1007/s13205-017-0911-6].

Periago, P.M., Van Schaik, W., Abee, T. and Wouters, J.A. 2002. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 68(7): 3486-3495.

Rath, S., Bal, S.C.B. and Dubey, D. 2021. Oral biofilm: Development mechanism, multidrug resistance, and their effective management with novel techniques. Rambam Maimonides Medical Journal, 12(1): 1-8. [https://doi.org/10.5041/RMMJ.10428].

Runde, S., Molière, N., Heinz, A., Maisonneuve, E., Janczikowski, A., Elsholz, A.K.W., Gerth, U., Hecker, M. and Turgay, K. 2014. The role of thiol oxidative stress response in heat-induced protein aggregate formation during thermotolerance in Bacillus subtilis. Molecular Microbiology, 91(5): 1036-1052.

Salman, H.A. and Senthikumar, R. 2015. Identification and antibiogram profile of Streptococcus mutans and Streptococcus sobrinus from dental caries subjects. Journal of Applied Pharmaceutical Science, 5(6): 54-57.

Subramenium, G.A., Viszwapriya, D., Iyer, P.M., Balamurugan, K. and Pandian, S.K. 2015. CovR mediated antibiofilm activity of 3-furancarboxaldehyde increases the virulence of group a streptococcus. PLoS One, 10(5): [https://doi.org/10.1371/journal.pone.0127210].

Sweeny, L.C., Dave, J., Chambers, P.A. and Heritage, J. 2004. Antibiotic resistance in general dental practice - A cause for concern? Journal of Antimicrobial Chemotherapy, 53(4): 567-576. Urban-Chmiel, R., Dec, M., Puchalski, A. and Wernicki, A. 2013. Characterization of heat-shock proteins in Escherichia coli strains under thermal stress in vitro. Journal of Medical Microbiology. 62(12): 1897-1901.

Verbrugghe, E., Van Parys, A., Leyman, B., Boyen, F., Haesebrouck, F. and Pasmans, F. 2015. HtpG contributes to Salmonella typhimurium intestinal persistence in pigs. Veterinary Research, 46(1): 1-5. [https://doi.org/10.1186/s13567-015-0261-5].

Wang, S., Wang, H., Ren, B., Li, X., Wang, L., Zhou, H., Weir, M.D., Zhou, X., Masri, R.M., Oates, T.W., Cheng, L. and Xu, H.H.K. 2018. Drug resistance of oral bacteria to new antibacterial dental monomer dimethylaminohexadecyl methacrylate. Scientific Reports, 8(1): 1-11. [https://doi.org/10.1038/s41598-018-23831-3].

Published

2024-06-30

How to Cite

ROLE OF HIGH-TEMPERATURE PROTEIN G IN THE VIRULENCE AND DEVELOPMENT OF ANTIMICROBIAL RESISTANCE IN SOME ORAL BACTERIAL ISOLATES . (2024). Applied Biological Research, 26(2), 170–179. https://doi.org/10.48165/abr.2024.26.01.20