EFFECT OF VARIOUS PHYSICOCHEMICAL PARAMETERS ON SIDEROPHORE PRODUCTION BY MARINE Pseudomonas aeruginosa MGPB31

Authors

  • Priti Uchgaonkar School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai – 400 614, Maharashtra (India)
  • Sunita Singh School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai – 400 614, Maharashtra (India)
  • Debjani Dasgupta School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai – 400 614, Maharashtra (India)

DOI:

https://doi.org/10.48165/abr.2024.26.01.12

Keywords:

CAS, glycerol, iron, agitation, MM9 medium, siderophore

Abstract

 

Siderophores are low molecular weight compounds secreted by bacteria that  bind ferric iron with extremely high affinity. The siderophores help bacteria to  meet their iron needs under stress conditions as these compounds help in the  transport and storage of soluble form of iron in cells. In current study, we report  the effect of various physicochemical parameters that influence siderophore  production in marine Pseudomonas aeruginosa MGPB31. Siderophore  production was assayed using Chrome Azurol S (CAS) shuttle assay. The  maximum siderophore production (56% SU) was obtained in minimal M9  medium after 72 h incubation, followed by succinate medium (52% SU) and  King’s medium (51% SU). The M9 medium was then modified by replacing its  carbon, nitrogen and phosphate source. Enhanced siderophore production was  observed in modified medium comprising of glycerol (70% SU), tri ammonium  citrate (67% SU) and KH2PO4 (64% SU). The medium supplemented with iron  exhibited a significant reduction in siderophore production. The effect of  physical parameters like temperature, pH and agitation on siderophore  production revealed that the isolate exhibited maximum siderophore production  under static conditions in modified M9 medium devoid of iron at 25 ± 2°C and  neutral pH. The enhanced siderophore production obtained by marine P. aeruginosa MGPB31 indicates its further applicability in fields of industry  agriculture and environment. 

Downloads

Download data is not yet available.

References

Abo-Zaid, G.A. Soliman, N.A., Abdullah, A.S., El-Sharouny, E.E., Matar, S.M. and Sabry, S.A.F. 2020. Maximization of siderophores production from biocontrol agents, Pseudomonas

Factors affecting siderophore production in marine Pseudomonas 91

aeruginosa F2 and Pseudomonas fluorescens JY3 using batch and exponential fed-batch fermentation. Processes, 8: 455. [https://doi.org/10.3390/pr8040455].

Apelblat, A. 2014. Formation of amides, citrate-based siderophores and other compounds. pp. 267- 272. In: Citric Acid (1st edn.). Springer, New York, USA. [DOI 10.1007/978-3-319-11233-6]. Butaite, E., Kramer, J., Wyder, S. and Kummerli, R. 2018. Environmental determinants of pyoverdin production, exploitation and competition in natural Pseudomonas communities. Environmental Microbiology, 20(10): 3629-3642.

Cordero, O., Ventouras, L., Delong, E. and Polz, M. 2012. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proceedings of the Natural Academy of Sciences, 109(49): 20059-20064.

Duffy, B. and Defago, G. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas flourescens biocontrol strains. Journal of Applied and Environmental Microbiology, 65(6): 2429-2438.

Endicott, N., Rivera, G., Yang, J. and Wencewiz, T. 2020. Emergence of ferrichelatase activity in a siderophore-binding protein supports an iron shuttle in bacteria. ACS Central Science, 6(4): 493- 506.

Gaonkar, T. and Bhosle, S. 2013. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere, 93(9): 1835-1843.

Gomez, K.A. and Gomez, A.A. 1984. Statistical Procedure for Agricultural Research (2nd edn.). Willey, Hoboken, New Jersey, USA.

Grosse, C., Brandt, N., Van Antwerpen, P., Wintjens, R. and Matthijs S. 2023. Two new siderophores produced by Pseudomonas sp. NCIMB 10586: The anti-oomycete non-ribosomal peptide synthetase-dependent mupirochelin and the NRPS-independent triabactin. Frontiers in Microbiology, 14: 1143861. [https://doi.org/10.3389/fmicb.2023.1143861].

Guerinot, M., Meidl, E. and Plessner, O. 1990. Citrate as a siderophore in Bradyrhizobium japonicum. Journal of Bacteriology, 172(6): 3298-3303.

Kalyan, V.K., Meena, S., Karthikeyan, S. and Jawahar, D. 2022. Isolation, screening, characterization, and optimization of bacterium isolated from calcareous soils for siderophore production. Archives of Microbiology, 204:721. [http://dx.doi.org/10.1007/s00203-022-03322-w].

Manck, L.E., Park, J., Tully, B.J., Poire, A.M., Bundy, R.M., Dupont, C.L. and Barbeau, K.A. 2022. Petrobactin, a siderophore produced by Alteromonas, mediates community iron acquisition in the global ocean. International Society for Microbial Ecology, 16: 358-369.

Murugappan, R., Aravinth, A., Rajaroobia, R., Karthikeyan, M. and Alamelu, M. 2012. Optimization of MM9 constituents for enhancement of siderophoregenesis in marine Pseudomonas putida using response surface methodology. Indian Journal of Microbiology, 52(3): 433-441.

Niehus, R., Picot, A., Oliveria, N., Mitri, S and Foster, K. 2017. The evolution of siderophore production as a competitive trait. Evolution, 71(6): 1443-1455.

Northover, G.H.R., Mao, Y., Ahmed, H., Salvador Blasco, S., Vilar, R., Garcia-España, E., Weiss, D.J. 2021. Effect of salinity on the zinc(II) binding efficiency of siderophore functional groups and implications for salinity tolerance mechanisms in barley. Scientific Report, 11: 16704. [https://doi.org/10.1038/s41598-021-95736-7].

Park, J., Durham, B.P., Key, R.S., Groussman, R.D., Bartolek, Z., Pinedo-Gonzalez, P., Hawco, N.J., John, S.G., Carlson, M.C.G., Lindell, D., Juranek, L.W., Ferrón, S., Ribalet, F., Armbrust, E.V., Ingalls, A.E. and Bundy, R.M. 2023. Siderophore production and utilization by marine bacteria in the North Pacific Ocean. Limnology and Oceanography, 68: 1636-1653.

Pattan, J., Kajale, S. and Pattan, S. 2017. Isolation, production and optimization of siderophores from Pseudomonas flourescens NCIM 5096 and Pseudomonas from soil rhizosphere and marine water. International Journal of Current Microbiology and Applied Science, 6(3): 919-928.

Radzki, W., Manero, G., Algar, E., Garcia, J., Villaraco, G. and Solano, B. 2013. Bacterial siderophores efficiently provide iron to iron starved tomato plants in hydroponics culture. Antonie van Leeuwenhoek, 104(3): 321-330.

Romanowski, K., Zaborin, A., Fernandez, H., Poroyko, V., Valuckite, V., Gerdes, S., Liu, D., Zaborina, O. and Alverdy, J. 2011. Prevention of siderophore-mediated gut-derived sepsis due to P. aeruginosa can be achieved without iron provision by maintaining local phosphate abundance: role of pH. BMC Microbiology, 11: 212. [https://www.ncbi.nlm.nih.gov/pubmed/21943078].

Santos, S., Neto, I., Machado, M., Soares, M. and Soares, V. 2014. Siderophore production by Bacillus megatherium: Effect of growth phase and cultural conditions. Applied Biochemistry and Biotechnology, 172(1): 549-560.

Saraf, M., Sharma, S. and Thakkar, A. 2017. Production and optimization of siderophore from plant growth promoting bacteria. Vidya, 2: 40-53.

Sarvepalli, M., Velidandi, A., Korrapati, N. 2023. Optimization of siderophore production in three marine bacterial isolates along with their heavy-metal chelation and seed germination potential determination. Microorganisms, 11(12): 2873. [https://doi.org/10.3390/microorganisms11122873].

Sasirekha, B. and Srividya, S. 2016. Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporiodes causing diseases in chilli. Agriculture and Natural Resources, 50: 250-256.

Sayyed, R., Gangurde, N., Patel, P. and Chincholkar, S. 2010. Siderophore production by Alcaligenes faecalis and its application for growth promotion in Arachis hypogaea. Indian Journal of Biotechnology, 9: 302-307.

Singh, P., Khan A., Kumar, R., Kumar, R., Singh, V.K. and Srivastava, A. 2020. Recent developments in siderotyping: Procedure and application. World Journal of Microbiology and Biotechnology. 36:178. [https://doi.org/10.1007/s11274-020-02955-7].

Srivastava, P., Sahgal, M., Sharma, K., Enshasy, H.A.E., Gafur, A., Alfarraj, S., Ansari, M.J. and Sayyed, R.Z. 2022. Optimization and identification of siderophores produced by Pseudomonas monteilii strain MN759447 and its antagonism toward fungi associated with mortality in Dalbergia sissoo plantation forests. Frontiers in Plant Sciences, 13: 984522. [https://doi.org/10.3389/fpls.2022.984522].

Tailor, A.J. and Joshi, H.B. 2012. Characterization and optimization of siderophore production from Pseudomonas fluorescens strain isolated from sugarcane rhizosphere. Journal of Environmental Research and Development, 6: 688-694.

Timofeeva, A.M., Galyamova, M.R. and Sedykh, S.E. 2022. Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants, 11: 3065. [https://doi.org/10.3390/plants11223065].

Venkat Kumar, S., Menon, S., Agarwal, H. and Gopalakrishnan, D. 2017. Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resource-Efficient Technologies, 3(4): 434-439.

Uchgaonkar, P., Kudale S.; Singh S. and Dasgupta D. 2018a. Marine Pseudomonas aeruginosa MGPB31: A potential bioinoculum to alleviate salinity stress in spinach (Spinacia oleracea). pp. 136-137. In: Proceedings of the National Conference on Innovations in Food, Environment and Healthcare, Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 28-29 September, 2018, D. Y. Patil Deemed to be University, Navi Mumbai, India.

Uchgaonkar, P., Padmadas, N., Singh, S. and Dasgupta, D. 2018. Screening and identification of siderophore producing marine bacteria. Global Journal of Bio-Science and Biotechnology, 7(3): 457-461.

Yu S., Teng C., Bai X., Liang J., Song T., Dong L., Jin Y. and Qu, J. 2017. Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextration of PB from soil. Journal of Microbiology and Biotechnology, 27: 1500. [https://doi.org/10.4014/jmb.1705.05021].

Published

2024-03-23

How to Cite

EFFECT OF VARIOUS PHYSICOCHEMICAL PARAMETERS ON SIDEROPHORE PRODUCTION BY MARINE Pseudomonas aeruginosa MGPB31 . (2024). Applied Biological Research, 26(1), 84–92. https://doi.org/10.48165/abr.2024.26.01.12