TRICHODERMA AS A PROFICIENT BIOCONTROL AGENT FOR PHYTO-PATHOGENIC FUNGI – MECHANISM OF ACTION AND GENETIC ADVANCES

Authors

  • Sumaira Hamid Department of Biosciences, Faculty of Science, Integral University, Lucknow – 226 026, UP (India)
  • Snober S Mir Plant Virology and Molecular Pathology, Division of Plant Pathology, Faculty of Horticulture, S.K. University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Shalimar, Srinagar - 190 025, Jammu and Kashmir (India)
  • Sana B Surma Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow - 226 026, UP (India)
  • Sana Parveen Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow - 226 026, UP (India)
  • Bilal A Padder Plant Virology and Molecular Pathology, Division of Plant Pathology, Faculty of Horticulture, S.K. University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Shalimar, Srinagar - 190 025, Jammu and Kashmir (India)
  • G H Dar Centre for Advancement of Applied Sciences, Shalimar, Srinagar- 190 025, Jammu &Kashmir(India)
  • Mehraj D Shah Research Centre for Residue and Quality Analysis, Faculty of Horticulture, SKUAST-K, Shalimar, Srinagar - 190 025, Jammu & Kashmir (India)

DOI:

https://doi.org/10.48165/abr.2024.26.01.1

Keywords:

Biological control, genomics, mutagenesis, phytopathogens, proteomics, transcriptomics, Trichoderma

Abstract

Plant disease management presently relies heavily on chemical fungicides.  However, their harmful impact on human and ecosystem, and development of  fungicide-resistant strains has emphasized on biological control as alternative  eco-friendly strategy for disease management and sustainable agriculture.  Trichoderma is a widely used as biocontrol agent against various phyto pathogenic fungi owing to its effective strategies to suppress plant pathogens.  The control phenomenon involves direct mechanisms like mycoparasitism,  secretion of hydrolytic enzymes which degrade the cell walls of pathogenic  fungi, and indirect mechanisms like competition for resources, induction of  plant defense mechanism and antibiosis. Trichoderma’s multifaceted approach  to biological control makes it environment-friendly option for managing plant  diseases. Recent biotechnological approaches have simplified the isolation and  characterization of efficient biocontrol agents, along with the identification of  their genetic by-products. These techniques facilitate the cloning of these  microbes in plants, with aim to bolster their resistance to both biotic and  abiotic stresses. Biotechnological advances have not only reinforced the  symbiotic interaction between microbes and plants but also allowed the  modification of processes through microbial biocontrol agents (MCBAs).  Genome sequencing of MBCAs has provided valuable insights into their  genetic makeup, aiding their characterization. The present comprehensive review provides an insight to the existing and recent molecular advances  utilized to enhance the efficiency of MBCAs in managing plant diseases and  understanding biocontrol mechanisms through various omics technologies.  

Downloads

Download data is not yet available.

References

Abbasi, S., Safaie, N. and Shams-bakhsh, M. 2014. Evaluation of gamma-induced mutants of Trichoderma harzianum for biological control of charcoal rot of melon (Macrophomina phaseolina) in laboratory and greenhouse conditions. Journal of Crop Protection, 3: 509-521.

Adnan, M., Islam, W., Shabbir, A., Khan, K.A., Ghramh, H.A., Huang, Z., Chen, H.Y. and Lu, G.D. 2019. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microbial Pathogenesis, 129: 7-18.

Baek, J.M., Howell, C.R. and Kenerley, C.M.J.C.G. 1999. The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Current Genetics, 35: 41-50. Baiyee, B., Pornsuriya, C., Ito, S.I. and Sunpapao, A. 2019. Trichoderma spirale T76-1 displays biocontrol

activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria. Biological Control, 129: 195-200.

Balasubramanian, N., Thamil Priya, V., Gomathinayagam, S. and Lalithakumari, D. 2012. Fusant Trichoderma HF9 with enhanced extracellular chitinase and protein content. Applied Biochemistry and Microbiology, 48: 409-415.

Baroncelli, R., Piaggeschi, G., Fiorini, L., Bertolini, E., Zapparata, A., Pè, M.E., Sarrocco, S. and Vannacci, G. 2015. Draft whole-genome sequence of the biocontrol agent Trichoderma harzianum T6776. Genome Announcements, 3: [10.1128/genomea.00647-00615].

Baroncelli, R., Zapparata, A., Piaggeschi, G., Sarrocco, S. and Vannacci, G. 2016. Draft whole-genome sequence of Trichoderma gamsii T6085, a promising biocontrol agent of Fusarium head blight on wheat. Genome Announcements, 4: [10.1128/genomea.01747-01715].

Bhandari, S., Pandey, K.R., Joshi, Y.R. and Lamichhane, S.K. 2021. An overview of multifaceted role of Trichoderma spp. for sustainable agriculture. Archives of Agriculture Environmental Science, 6: 72-79. Bisby, G. 1939. Trichoderma viride Pers. ex Fries, and notes on Hypocrea. Transactions of the British Mycological Society, 23: 149-168.

Bischof, R. and Seiboth, B. 2014. Molecular tools for strain improvement of Trichoderma spp. pp. 179-191. In: Biotechnology and Biology of Trichoderma. Elsevier, New York, USA.

Brotman, Y., Kapuganti, J.G. and Viterbo, A. 2010. Trichoderma. Current Biology 20: R390-R391. Brotman, Y., Landau, U., Pnini, S., Lisec, J., Balazadeh, S., Mueller-Roeber, B., Zilberstein, A., Willmitzer, L., Chet, I. and Viterbo, A. 2012. The LysM receptor-like kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in Arabidopsis plants.

Sumaira Hamid et al.

Molecular Plant, 5: 1113-1124.

Cai, F. and Druzhinina, I.S. 2021. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Diversity, 107: 1-69.

Cai, F., Dou, K., Wang, P., Chenthamara, K., Chen, J. and Druzhinina, I.S. 2022. The current state of Trichoderma taxonomy and species identification. pp. 3-35. In: Advances in Trichoderma Biology for Agricultural Applications, Springer, New York, USA.

Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Gazis, R., Degenkolb, T. and Samuels, G.J. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia, 107: 558-590.

Ch, P. 1794. Disposita methodical fungorum. Romers Neues Mag Bot, 1: 81-128.

Chi, S., Xue, X., Zhang, R., Zhang, L. and Yu, J. 2023. Taugt17b1 overexpression in Trichoderma atroviride enhances its ability to colonize roots and induce systemic defense of plants. Pathogens, 12: 264. [10.3390/pathogens12020264].

Compant, S., Gerbore, J., Antonielli, L., Brutel, A. and Schmoll, M. 2017. Draft genome sequence of the root colonizing fungus Trichoderma harzianum B97. Genome Announcements, 5: [10.1128/genomea.00137- 00117].

Contreras-Cornejo, H.A., Macías-Rodríguez, L., López-Bucio, J.S. and López-Bucio, J. 2014. Enhanced plant immunity using Trichoderma. pp. 495-504. In: Biotechnology and Biology of Trichoderma. Elsevier, Amsterdam, Netherlands.

da Silva, F.L., Aquino, E.N., da Cunha, D.C., Hamann, P.R.V., Magalhães, T.B., Steindorff, A.S., Ulhoa, C.J. and Noronha, E.F. 2022. Analysis of Trichoderma harzianum TR 274 secretome to assign candidate proteins involved in symbiotic interactions with Phaseolus vulgaris. Biocatalysis Agricultural Biotechnology, 43: 102380. [https://doi.org/10.1016/j.bcab.2022.102380].

Dandale, S., Ingle, S., Vyavhare, G. and Mane, S. 2017. Bio-control efficacy of Trichoderma viride mutants against Fusarium oxysporum f.sp. ciceri. Journal of Plant Disease Sciences, 12: 108-113. de Boer, M., Bom, P., Kindt, F., Keurentjes, J.J., van der Sluis, I., Van Loon, L. and Bakker, P.A. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease suppressive mechanisms. Phytopathology, 93: 626-632.

de Lima, F.B., Félix, C., Osório, N., Alves, A., Vitorino, R., Domingues, P., da Silva Ribeiro, R.T. and Esteves, A.C. 2017. Trichoderma harzianum T1A constitutively secretes proteins involved in the biological control of Guignardia citricarpa. Biological Control, 106: 99-109.

Dolatabad, H.K., Javan-Nikkhah, M., Safari, M. and Golafaie, T.P. 2019. Effects of protoplast fusion on the antifungal activity of Trichoderma strains and their molecular characterisation. Archives of Phytopathology Plant Protection, 52: 1255-1275.

Druzhinina, I.S., Komoń-Zelazowska, M., Ismaiel, A., Jaklitsch, W., Mullaw, T., Samuels, G.J. and Kubicek, C.P. 2012. Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genetics Biology, 49: 358-368.

Ellatif, S.A., Abdel Razik, E.S., Al-Surhanee, A.A., Al-Sarraj, F., Daigham, G.E. and Mahfouz, A.Y. 2022. Enhanced production, cloning, and expression of a xylanase gene from endophytic fungal strain Trichoderma harzianum kj831197. 1: Unveiling the in vitro anti-fungal activity against phytopathogenic fungi. Journal of Fungi, 8: 447. [10.3390/jof8050447].

Esposito, A., Colantuono, C., Ruggieri, V. and Chiusano, M.L. 2016. Bioinformaticsfor agriculture in the next generation sequencing era. Chemical Biological Technologies in Agriculture, 3: 1-12. Fanelli, F., Liuzzi, V.C., Logrieco, A.F. and Altomare, C. 2018. Genomic characterization of Trichoderma atrobrunneum (T. harzianum species complex) Item 908: Insight into the genetic endowment of a multi target biocontrol strain. BMC Genomics, 19: 1-18.

Gajera, H., Domadiya, R., Patel, S., Kapopara, M. and Golakiya, B. 2013. Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system–a review. Current Research in Microbiology & Biotechnology, 1: 133-142.

Ghasemi, S., Safaie, N., Shahbazi, S., Shams-Bakhsh, M. and Askari, H. 2019. Enhancement of lytic enzymes activity and antagonistic traits of Trichoderma harzianum using γ-radiation induced mutation. Journal of Agricultural Science Technology, 21: 1035-1048.

Ghazanfar, M.U., Raza, M., Raza, W. and Qamar, M.I. 2018. Trichoderma as potential biocontrol agent, its exploitation in agriculture: A review. Plant Protection, 2: 109-135.

Grinyer, J., Hunt, S., McKay, M., Herbert, B.R. and Nevalainen, H. 2005. Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Current Haggag, W.M. and Mohamed, H. 2002. Enhanecment of antifungal metabolite production from gamma-ray induced mutants of some Trichoderma species for control onion white disease. Plant Pathology Bulletin, 11: 45-56.

Hanson, L. and Howell, C. 2004. Elicitors of plant defense responses from biocontrol strains of Trichoderma viren. Phytopathology, 94: 171-176.

Herrera-Estrella, A. 2014. Genome-wide approaches toward understanding mycotrophic Trichoderma species. pp. 455-464. In: Biotechnology and Biology of Trichoderma. Elsevier, Amsterdam, Netherlands. Hirpara, D.G., Gajera, H., Patel, A.K., Katakpara, Z.A. and Golakiya, B. 2019. Molecular insights into development of Trichoderma interfusants for multi-stress tolerance enhancing antagonism against Sclerotium rolfsii Sacc. Journal of Cellular Physiology, 234: 7368-7383.

Kamakannan, A., Mohan, L., Harish, S., Radjacommare, R., Angayarkanni, T., Chitra, K., Karuppiah, R., Mareeswari, P., Rajinimala, N. and Amutha, G. 2004. Biocontrol agents induce disease resistance in Phyllanthus niruri Linn against damping-off disease caused by Rhizoctonia solani. Phytopathologia Mediterranea, 43, 187-194.

Kator, L., Kalu, O.J. and Oche, O.D. 2015. Assessing the biocontrol potential of Trichoderma species on Sclerotia rot disease of tomato plants in Chile Island (Makurdi). IOSR Journal of Environmental Sciences, Toxicology & Food Technology, 9: 51-58.

Khan, M.R. and Mohiddin, F.A. 2018. Trichoderma: Its multifarious utility in crop improvement. pp. 263-291. In: Crop Improvement Through Microbial Biotechnology. Elsevier, Amsterdam, Netherlands. Khan, M.R., Shahid, S., Mohidin, F.A. and Mustafa, U. 2017. Interaction of Fusarium oxysporum f. sp. gladioli and Meloidogyne incognita on gladiolus cultivars and its management through corm treatment with biopesticides and pesticides. Biological Control, 115: 95-104.

Kubicek, C.P., Herrera-Estrella, A., Seidl-Seiboth, V., Martinez, D.A., Druzhinina, I.S., Thon, M., Zeilinger, S., Casas-Flores, S., Horwitz, B.A. and Mukherjee, P.K. 2011. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 12: 1-15.

Kubicek, C.P., Steindorff, A.S., Chenthamara, K., Manganiello, G., Henrissat, B., Zhang, J., Cai, F., Kopchinskiy, A.G., Kubicek, E.M. and Kuo, A. 2019. Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics, 20: 1-24.

Kullnig-Gradinger, C.M., Szakacs, G. and Kubicek, C.P. 2002. Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycological Research, 106: 757-767.

Kuo, H.C., Wang, T.Y., Chen, P.P., Chen, R.S. and Chen, T.Y. 2015. Genome sequence of Trichoderma virens FT-333 from tropical marine climate. FEMS Microbiology Letters, 362: fnv036. [10.1093/femsle/fnv036]. Lakhani, H., Vakharia, D., Makhlouf, A., Eissa, R. and Hassan, M. 2016. Influence of protoplast fusion in

Trichoderma spp. on controlling some soil borne diseases. Journal of Plant Pathology and Microbiology, 7(8): 1-7. [https://api.semanticscholar.org/CorpusID:54951891].

Lamdan, N.L., Shalaby, S., Ziv, T., Kenerley, C.M. and Horwitz, B.A. 2015. Secretome of Trichoderma interacting with maize roots: Role in induced systemic resistance(s). Molecular Cellular Proteomics, 14: 1054-1063.

Limón, M.C., Pintor-Toro, J.A. and Benítez, T.J.P. 1999. Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathology, 89: 254-261. Li, W.C., Huang, C.H., Chen, C.L., Chuang, Y.C., Tung, S.Y. and Wang, T.F. 2017. Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnology for Biofuels, 10: 1-20.

Lin, Y.R., Lo, C.T., Liu, S.Y. and Peng, K.C. 2012. Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. Journal of Agricultural Food Chemistry, 60: 2123-2128. Lorito, M., Woo, S.L., Harman, G.E. and Monte, E. 2010. Translational research on Trichoderma: From omics to the field. Annual Review of Phytopathology, 48: 395-417.

Luo, K., Chen, Y., Qian, X., Zhong, H., Onchari, M.M., Liu, X., Tian, B., Zang, S., Yin, X., Chen, X. and Zheng, H. 2023. Enhancing surfactin production in B. velezensis Bs916 combined cumulative mutagenesis and expression key enzymes. Applied Microbiology and Biotechnology, 107(13): 4233-4244.

Majumdar, A. 2023. Molecular techniques for the improvement of microbial biocontrol agents against plant pathogens. Egyptian Journal of Biological Pest Control, 33: 103. [103 [10.1186/s41938-023-00746-4]. Malmierca, M., Cardoza, R., Alexander, N., McCormick, S., Hermosa, R., Monte, E. and Gutiérrez, S. 2012. Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense related genes. Applied & Environmental Microbiology, 78: 4856-4868.

Sumaira Hamid et al.

Marques, E., Martins, I., and Mello, S.C.M.D. 2018. Antifungal potential of crude extracts of Trichoderma spp. Biota Neotropica, 18: e20170418. [DOI:10.1590/1676-0611-BN-2017-0418].

Martinez, D., Berka, R.M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S.E., Chapman, J., Chertkov, O., Coutinho, P.M. and Cullen, D. 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26: 553-560.

Miao, F.P., Liang, X.R., Yin, X.L., Wang, G. and Ji, N.Y. 2012. Absolute configurations of unique harziane diterpenes from Trichoderma species. Organic Letters, 14: 3815-3817.

Mohiddin, F., Khan, M., Khan, S. and Bhat, B. 2010. Why Trichoderma is considered super hero (super fungus) against the evil parasites? Plant Pathology Journal, 9: 92-102.

Mukherjee, M., Hadar, R., Mukherjee, P. and Horwitz, B. 2003. Homologous expression of a mutated beta‐ tubulin gene does not confer benomyl resistance on Trichoderma virens. Journal of Applied Microbiology, 95: 861-867.

Mukherjee, P.K., Horwitz, B.A. and Kenerley, C.M. 2012. Secondary metabolism in Trichoderma –A genomic perspective. Microbiology, 158: 35-45.

Mukhopadhyay, R. and Kumar, D. 2020. Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control, 30: 1-8. Nabi, A., Ahmad, M., Shah, M.D., Padder, B.A., Dar, M.S. and Banday, S., 2023. First report of Myclobutanil resistance and shift in sensitivity to difenoconazole and flusilazole in North-western Himalayan Venturia inaequalis populations. Australasian Plant Pathology, 52: 3-22.

Naik, M., Nitnavare, R.B., Yeshvekar, R., Bhattacharya, J., Bhatnagar-Mathur, P. and Sharma, M. 2023. Genetic enhancement of Trichoderma asperellum biocontrol potentials and carbendazim tolerance for chickpea dry root rot disease management. PloS One, 18: e0280064. [doi:10.1371/journal.pone.0280064].

Nega, A. and Healthcare. 2014. Review on concepts in biological control of plant pathogens. Journal of Biology Agriculture, 4: 33-54.

Ojha, S. and Chatterjee, N. 2011. Mycoparasitism of Trichoderma spp. in biocontrol of Fusarial wilt of tomato. Archives of Phytopathology Plant Protection, 44: 771-782.

Oni, F.E., Kieu Phuong, N. and Höfte, M. 2015. Recent advances in Pseudomonas biocontrol. pp. 167-198. In: Bacteria-Plant Interactions: Advanced Research and Future Trends (eds. J. Murillo, B.A. Vinatzer, R.W. Jackson and D.L. Arnold), Caister Academic Press, Pooli, UK.

Otto, A., Bernhardt, J., Hecker, M. and Becher, D. 2012. Global relative and absolute quantitation in microbial proteomics. Current Opinion in Microbiology, 15: 364-372.

Peng, Y., Li, S. J., Yan, J., Tang, Y., Cheng, J.P., Gao, A.J., Yao, X., Ruan, J.J. and Xu, B.L. 2021. Research progress on phytopathogenic fungi and their role as biocontrol agents. Frontiers in Microbiology, 12: 670135 [DOI: 10.3389/fmicb.2021.670135].

Piombo, E., Sela, N., Wisniewski, M., Hoffmann, M., Gullino, M.L., Allard, M.W., Levin, E., Spadaro, D. and Droby, S. 2018. Genome sequence, assembly and characterization of two Metschnikowia fructicola strains used as biocontrol agents of postharvest diseases. Frontiers in Microbiology, 9: 348178. [https://doi.org/10.3389/fmicb.2018.00593].

Poveda, J. 2021. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biological Control, 159: 04634. [https://doi.org/10.1016/j.biocontrol.2021.104634].

Qualhato, T.F., Lopes, F.A.C., Steindorff, A.S., Brandao, R.S., Jesuino, R.S.A. and Ulhoa, C.J. 2013. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnology Letters, 35: 1461-1468.

Radjacommare, R., Venkatesan, S. and Samiyappan, R. 2010. Biological control of phytopathogenic fungi of vanilla through lytic action of Trichoderma species and Pseudomonas fluorescens. Archives of Phytopathology Plant Protection, 43: 1-17.

Ramada, M.H.S., Steindorff, A.S., Bloch Jr., C. and Ulhoa, C.J. 2016. Secretome analysis of the mycoparasitic fungus Trichoderma harzianum ALL 42 cultivated in different media supplemented with Fusarium solani cell wall or glucose. Proteomics, 16: 477-490.

Rao, G.S., Reddy, N.N.R. and Surekha, C. 2015. Induction of plant systemic resistance in legumes Cajanus cajan, Vigna radiata, Vigna mungo against plant pathogens Fusarium oxysporum and Alternaria alternate – A Trichoderma viride mediated reprogramming of plant defense mechanism. International Journal of Recent Scientific Research, 6: 4270-4280.

Reithner, B., Ibarra-Laclette, E., Mach, R.L. and Herrera-Estrella, A. 2011. Identification of mycoparasitism related genes in Trichoderma atroviride. Applied Environmental Microbiology, 77: 4361-4370. Rifai, M. A. 1969. A revision of the genus Trichoderma. Mycological Papers, 116: 1-56.

Sahampoor, L., Zaker Tavallaie, F., Fani, S.R. and Shahbazi, S. 2020. In vitro efficiency of Trichoderma harzianum mutants in biocontrol of Fusarium oxysporum f. sp. radicis-cucumerinum. Journal of Crop Protection, 9: 285-300.

Sharma, V., Salwan, R., Sharma, P. and Gulati, A. 2017. Integrated translatome and proteome: approach for accurate portraying of widespread multifunctional aspects of Trichoderma. Frontiers in Microbiology, 8: 1602. [DOI: 10.3389/fmicb.2017.01602].

Siddiquee, S., Cheong, B.E., Taslima, K., Kausar, H. and Hasan, M.M. 2012. Separation and identification of volatile compounds from liquid cultures of Trichoderma harzianum by GC-MS using three different capillary columns. Journal of Chromatographic Science, 50: 358-367.

Singh, A., Shukla, N., Kabadwal, B., Tewari, A. and Kumar, J. 2018. Review on plant-Trichoderma-pathogen interaction. International Journal of Current Microbiology Applied Sciences, 7: 2382-2397. Singh, R., Maurya, S. and Upadhyay, R.S. 2016. The improvement of competitive saprophytic capabilities of Trichoderma species through the use of chemical mutagens. Brazilian Journal of Microbiology, 47: 10-17. Singh, S.K., Singh, P.N., Maurya, D.K. and Rana, S. 2020. Advances in systematics, taxonomy, and conservation of Trichoderma species. Trichoderma: Agricultural Applications, 61: 1-20. Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M.S., Ramakrishnan, M., Landi, M., Araniti, F. and Sharma, A. 2020. Trichoderma:The secrets of a multitalented biocontrol agent. Plants, 9: 762. [10.3390/plants9060762]. Sridharan, A., Sugitha, T., Karthikeyan, G., Nakkeeran, S. and Sivakumar, U. 2021. Metabolites of Trichoderma longibrachiatum EF5 inhibits soil borne pathogen, Macrophomina phaseolina by triggering amino sugar metabolism. Microbial Pathogenesis, 150: 104714. [DOI:10.1016/j.micpath.2020.104714]. Stenberg, J.A., Sundh, I., Becher, P. G., Björkman, C., Dubey, M., Egan, P.A., Friberg, H., Gil, J.F., Jensen, D.F. and Jonsson, M. 2021. When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science, 94: 665-676.

Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R. and Schuhmacher, R. 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of Microbiological Methods, 81: 187-193.

Studholme,D.J.,Harris, B., Le Cocq, K., Winsbury, R., Perera, V., Ryder, L., Ward, J.L., Beale, M.H., Thornton, C.R. and Grant, M. 2013. Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture - Insights from genomics. Frontiers in Plant Science, 4: 258. [DOI: 10.3389/fpls.2013.00258].

Takeuchi, K., Noda, N., and Someya, N. 2014. Complete genome sequence of the biocontrol strain Pseudomonas protegens Cab57 discovered in Japan reveals strain-specific diversity of this species. PloS One, 9: e93683. [DOI:10.1371/journal.pone.0093683].

Vinale, F., Nigro, M., Sivasithamparam, K., Flematti, G., Ghisalberti, E.L., Ruocco, M., Varlese, R., Marra, R., Lanzuise, S., and Eid, A. 2013. Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiology Letters, 347: 123-129.

Wang, Y., Zhu, X., Wang, J., Shen, C. and Wang, W. 2023. Identification of mycoparasitism-related genes against the phytopathogen Botrytis cinerea via transcriptome analysis of Trichoderma harzianum T4. Journal of Fungi, 9: 324. [10.3390/jof9030324].

Ward, M. 2016. The regulatory landscape for biological control agents. EPPO Bulletin, 46: 249-253. Win, T.T., Bo, B., Malec, P., Khan, S. and Fu, P. 2021. Newly isolated strain of Trichoderma asperellum from disease suppressive soil is a potential bio-control agent to suppress Fusarium soil borne fungal phytopathogens. Journal of Plant Pathology, 103: 549-561.

Yang, D., Pomraning, K., Kopchinskiy, A., Karimi Aghcheh, R., Atanasova, L., Chenthamara, K., Baker, S.E., Zhang, R., Shen, Q. and Freitag, M. 2015. Genome sequence and annotation of Trichoderma parareesei, the ancestor of the cellulase producer Trichoderma reesei. Genome Announcements, 3: [10.1128/genomea.00885-00815].

Yang, H.H., Yang, S.L., Peng, K.C., Lo, C.T. and Liu, S.Y. 2009. Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycological Research, 113: 924-932.

Zehra, A., Meena, M., Dubey, M.K., Aamir, M. and Upadhyay, R. 2017. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease. Botanical Studies, 58: 1-14.

Zeilinger, S., Gruber, S., Bansal, R. and Mukherjee, P.K. 2016. Secondary metabolism in Trichoderma– chemistry meets genomics. Fungal Biology Reviews, 30: 74-90.

Zhou, Y., Wang, Y., Chen, K., Wu, Y., Hu, J., Wei, Y., Li, J., Yang, H., Ryder, M. and Denton, M.D. 2020. Near-complete genomes of two Trichoderma species: A resource for biological control of plant pathogens. Molecular Plant-Microbe Interactions, 33: 1036-1039.

Published

2024-03-23

How to Cite

TRICHODERMA AS A PROFICIENT BIOCONTROL AGENT FOR PHYTO-PATHOGENIC FUNGI – MECHANISM OF ACTION AND GENETIC ADVANCES. (2024). Applied Biological Research, 26(1), 1–17. https://doi.org/10.48165/abr.2024.26.01.1