CHEMICAL FEATURES OF FOREWING SCALES OF Leptosia nina Fabricius, 1793 (Lepidoptera: Pieridae)

Authors

  • Amina Thaj Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram - 695 581, Kerala (India)
  • G Prasad Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram - 695 581, Kerala (India)

DOI:

https://doi.org/10.48165/abr.2024.26.01.11

Keywords:

Chemical composition spectra, forewing, FTIR spectroscopy, functional groups, Leptosia nina, scales

Abstract

The functional groups have a vital role in insect physiology, behaviour, and  adaptation to the environment and are crucial in biomimetics to replicate  and adapt biological functions for diverse use ranging from medicine to  material science and energy technologies. A study was conducted on Leptosia  nina forewing scales to assess its chemical composition spectra using Fourier  Transform Infrared Spectroscopic (FTIR) analysis. The identified functional groups from dorsal white, dorsal black spot, ventral white and ventral black spot areas of L. nina forewing composed of alcohols, phenols, aldehydes, aliphatic amine, alkanes, alkenes, alkyl halides, alkynes, aromatic groups,carboxylic acid groups, nitro compounds, amines, ester and ether with various  stretches. The spectra showed minor variations in peaks in the four regions studied. The  study is the first record revealing the functional groups of L. nina forewing  scales. 

Downloads

Download data is not yet available.

References

Aarti, B. and Arya, M.K. 2021. Quantitative assessment of anthophilous insects associated with medicinally important weed plants of genus Cirsium. Indian Journal of Ecology, 48(3): 731-738. Archana, B., Sharmila, E.J., Snegapriya, M., Rangesh, K. and Susaritha, S. 2022. Fouriertransform infra-red spectrochemical analyses of Pieridae butterfly wings. Entomon, 47(1):103-112. Baker, M., Trevisan, J., Bassan, P., Bhargava, R., Butler, H.J., Dorling, K.M., Fielden, P.R., Fogarty, S.W., Fullwood, N.J., Heys, K.A., Hughes, C., Lasch, P., Martin-Hirsch, P.L., Obinaju, B., Sockalingum, G.D., Sulé-Suso, J., Strong, R.J., Walsh, M.J., Wood, B.R., Gardner, P. and Martin, F.L. 2014. Using fourier transform IR spectroscopy to analyze biological materials. Nature Protocol, 9(8): 1771-1791.

Chung, H. and Carroll, S.B. 2015. The origin of species; dual role of insect’s hydrocarbons in adaptation and mating. Bioassays, 37(7): 822-830.

Das, Se., Nachimuthu Shanmugam, Ajay Kumar and Seiko Jose. 2017. Potential of biomimicry in the field of textile technology. Bioinspired, Biomimetic and Nanobiomaterials, 6(4): 1-42. Drijfhout F.P., Kather R. and Martin S.J. 2009. The role of cuticular hydrocarbons in insects. In:

Behavioral and Chemical Ecology (Eds. Wen Zhang and Hong Liu). Nova Publishers (ISBN: 978-1- 60741-099-7).

Ffrench Constant, R.H. 2012. Butterfly wing colors driven by the evolution of developmental heterochrony-butterfly wing colors and patterns by numbers. Heredity, 108(6): 592-593. Kamnev A., Dyatlova Y.A., Kenzhegulov O.A., Vladimirova A.A., Mamchenkova P.V. and Tugarova A.V. 2021. Fourier transform infrared (FTIR) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: sample preparation effects. Molecules, 26(4): 1146 (DOI: 10.3390/molecules26041146) Kannan P., Karthick N.K. and Arivazhagan G. 2020. Hydrogen bond interactions in the binary solutions of formamide with methanol: FTIR spectroscopic and theoretical studies. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 229: 117892. (DOI: 10.1016/j.saa.2019.117892).

Krishna X., Nie A.D., Warren J.E., Llorente-Bousquets A.D., Briscoe and Lee J. 2020. Infrared optical and thermal properties of microstructures in butterfly wings. Proceedings of the National Academy of Sciences USA, 117(3): 1566-1572.

Kunte K., Basu D. and Girish kumar G.S. 2020. Taxonomy, systematics and biology of Indian butterflies in the 21st Century. In: Indian Insects: Diversity and Science (Eds: S. Ramani, Prashanth Mohanraj and H.M. Yeshwanth), CRC Press/Taylor and Francis group. (eBook ISBN: 9780429061400)

Larkin, P. 2011. Instrumentation and sampling methods. pp. 27-54. In: Infrared and Raman Spectroscopy (ed. P. Larkin). Elsevier (https://doi.org/10.1016/B978-0-12-386984-5.10003-5). Li, Yu., Zhang, Ling-Yu., Zhang, Cheng., Zhang, Zhan- Rong and Liu, Lin. 2022. Bioinspired antifouling Fe-based amorphous coating via killing- resisting dual surface modifications. Scientific Reports, 12: 819. (https://www.nature.com/articles/s41598-021-04746-y.pdf). Machoviè V., Lapèák L., Havelcová M., Borecká L., Novotná M., Novotná M., Javùrková I., Langrová I., Hájková Š., Brožová A. and Titìra D. 2017. Analysis of European honeybee (Apis Mellifera) wings using ATR-FTIR and raman spectroscopy: a pilot study. Scientia Agriculturae Bohemica, 48(1): 22-29.

Martin S.J. and Drijfhout F.P. 2009. Nestmate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. Journal of Chemical Ecology, 35: 368- 374.

Amina Thaj and G. Prasad

Martin S.J., Jones G.R., Châline N. and Ratnieks F.L. 2004. Role of hydrocarbons in egg recognition in the honey bee. Physiological Entomology, 29: 395-399.

Mistek E. and Lednev I.K. 2018. FT-IR spectroscopy for identification of biological stains for forensic purposes. IR spectroscopy for today’s spectroscopists, 33(8): 8-19.

Petibios C.K., Wehbe K., Belbachir R.N. and Deleris G. 2009. Current trends in thedevelopment of FTIR imaging for the quantitative analysis of biological samples. Acta Physica Polonica, A115(2): 507-512.

Rundel H.D., Chenoweth S.F., Doughty P. and Blows M.W. 2005. Divergent selection and the evolution of signal traits and mating preferences”. PLoS biology, 3: 1988-1995. Schlick-Steiner B.C., Steiner F.M., Moder K., Seifert B., Sanetra M., Dyreson E., Stauffer C. and Christian E. 2006. A multidisciplinary approach reveals cryptic diversity in western palearctic tetramorium ants (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 40: 259-273.

Tian X., Song G., Ding X., Jiajun G.U., Liu Q., Zhang W., Su H., Kang D., Qin Z. and Zhang D. 2015. Photonic structure arrays generated using butterfly wing scales as biological units. Journal of Materials Chemistry B, 3(9): 1743-1747.

Zhang, Yunlei., Ma, Shuanhong., Li, Bin., Yu, Bo., Lee, Haeshin., Cai, Meirong., Gorb, Stanislav N., Zhou, Feng and Liu, Weimin. 2021. Gecko’s feet-inspired self-peeling switchable dry/wet adhesive. Chemistry of Materials, 33(8): 2785-2795.

Published

2024-03-23

How to Cite

CHEMICAL FEATURES OF FOREWING SCALES OF Leptosia nina Fabricius, 1793 (Lepidoptera: Pieridae) . (2024). Applied Biological Research, 26(1), 130–135. https://doi.org/10.48165/abr.2024.26.01.11