Bioethanol Production From Waste Potatoes Using Bacterium Zymomonas Mobilis Mtcc 2427

Authors

  • Sudhir Kumar Rai Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur – 482 004 Madhya Pradesh (India)
  • L P S Rajput Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur – 482 004 Madhya Pradesh (India)
  • Yogendra Singh Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur – 482 004 Madhya Pradesh (India)
  • Keerti Tantwai Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur – 482 004 Madhya Pradesh (India)

DOI:

https://doi.org/10.48165/

Keywords:

Bioethanol, biofuels, SiSF, fermentation, potato, Zymomonas mobilis

Abstract

The present study was carried out to assess bioethanol production from waste  potatoes and optimize some fermentation variables for Zymomonas mobilis MTCC 2427. The waste potatoes contained 76% starch. Under solid state  fermentation (SSF) maximum bioethanol of 14.17 g 100 mL-1 medium was  achieved at 35°C when incubated for 120 hr. Under simultaneoussaccharification  and fermentation (SiSF), highest ethanol yield of 14.36 g 100 mL-1 medium was  attained at 35°C, pH 5.5 and 120 hr. The ethanol produced was volatile,  flammable, colourless and miscible in water and organic solvents having pleasant smell. SiSF fermentation gave more ethanol recovery than SSF method. 

Downloads

Download data is not yet available.

References

A.O.A.C. 1980. Official Methods of Analysis (23rd edn.). Association of Official Analytical Chemists, Washington, USA.

Ado, S.A., Olukotun, G.B., Ameh, J.B. and Yabaya, A. 2009. Bioconversion of cassava starch to ethanol in a simultaneous saccharification and fermentation process by co-cultures of Aspergillus niger and Saccharomyces cerevisiae. Science World Journal, 4: 19-22.

Bandaru, V.V.R., Somalanka S.R., Mendu D.R., Madicherla N.R. and Chityala, A. 2006. Optimization of fermentation conditions for the production of ethanol from sago starch by co-immobilized amyloglucosidase and cells of Zymomonas mobilis using response surface methodology. Enzyme and Microbiolal Technology, 38: 209-214.

Behera, S., Ray, R.C. and Mohanty, R.C. 2010. Comparative study of bioethanol production from mahula (Madhuca latifolia L.) flowers by immobilized cells of Saccharomyces cerevisiae and Zymomonas mobilis in calcium alginate beads. Journal of Scientific & Industrial Research, 69: 472-475.

Brennan, D. and Tipper, C.F.H. 1967. A Laboratory Manual of Experiments in Physical Chemistry. Graw-Hill Publishing Company, New York, USA.

Caylak, B. and Sukan , F.V. 1998. Comparison of different production process for bioethanol. Turkish Journal of Chemistry, 22: 351-359.

Cazetta, M.L., Celligoi M.A.P.C., Buzato, J.B. and Scarmino, I.S. 2007. Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on ethanol production. Bioresource Technology, 98: 2824-2828.

Chatanata,D.K., Attri,C., Gopal, K., Devi, M., Gupta, G. and Bhalla, T.C. 2008. Bioethanol production from apple pomacae left after juice extraction. The Internet Journal of Microbiology, 5: 2. EUBIA. 2006. Creating Markets for Renewable Energy Technologies EU RES Technology Marketing

Campaign: Bioethanol Production and Use. European Biomass Industry Association (www.eubia.org)

Ghobadian, B., Rahimi, H., Hashjin, T.T. and Khatamifar, M. 2008. Production of bioethanol and sunflower methyl ester and investigation of fuel blend properties. Journal of Agricultural Science and Technology, 10: 225-232.

Ghosal, A., Banarjee, S. and Chatarjee, S. 2013. Biofuel precursor from potato waste. International Journal of Renewable Energy Technology, 3: 213-219.

Hossain A.B.M.S. and Fazliny, A.R. 2010. Creation of alternative energy by bioethanol production from pineapple waste and the usage of its properties for engine. African Journal of Microbiological Research, 4: 813-819.

Sudhir Kumar Rai et al.

Ibeto, C.N, Ofoefule, A.U. and Agbo, K.E. 2011. A global overview of biomass potentials for bio ethanol production: A renewable alternative fuel. Trends in Applied Science Research, 6: 410- 425.

Izmirlioglu, G. and Demirci, A. 2010. Ethanol production from waste potato mash by using Saccharomyces cerevisia. American Society of Agricultural Bio. Engineering. (www.asabe.org.) Jegannathan, K.R, Chan, E. and Ravindra, P. 2011. Biotechnology in biofuels - A cleaner technology. Journal of Applied Sciences, 11: 2421-2425.

Keer, R.W. 1950. Chemistry and Industry of Starch. Academic Press, New York, USA. Kim, S. and Dale, D.E. 2005. Environmental aspect of ethanol derived from no-tilled corn grain non renewable energy consumption and greenhouse gas emission. Biomass and Bioenergy, 28: 475- 489.

Liimatainen, H., Kuokkanen , T. and Kaariainen , J. 2004. Development of bioethanol production from waste potatoes. pp. 123-129. In: Proceedings of the Waste Minimization and Resources Use Optimization Conference (ed. E. Pongrácz). University of Oulu, Finland.

Lim, Y., Jang, Y. and Kim, K. 2013. Production of a high concentration of ethanol from potato tuber by high gravity fermentation. Food Science and Biotechnology, 22: 441-448.

Ming-xiong, H., Feng, H., Bai, F., Li, Y.., Liu, X. and Zhang, Y.Z. 2009. Direct production of ethanol from raw sweet potato starch using genetically engineered Zymomonas mobilis. African Journal of Microbiological Research, 3: 721-726.

Murugan, C.S. and Rajendran, S. 2013. Bioethanol production from agave leaves using Saccharomyces cerevisiae (MTCC 173) and Zymomonas mobilis (MTCC 2427). International Journal of Microbiological Research, 4: 23-26.

O’Leary, D. 2000. Ethanol online: available on http://www.Ethanol.org.

Oyeleke, S.B. and Jibrin, N.M. 2009. Production of bioethanol from guinea cornhusk and millet husk. African Journal of Microbiological Research, 3: 147-152.

Pradeep, P., Reddy, O.V.S., Mohan, P.R. and Ko, S. 2012. Process optimization for ethanol production from very high gravity (VHG) finger millet medium using response surface methodology. Iranian Journal of Biotechnology, 10: 168-174.

Qadri M.T., Qadri, S.S., Farid, F. and Abid, N. 2009. Automated separation of organic liquids through their boiling points. World Academy of Science, Engineering & Technology, 51: 289-2 Sharma V., Kent, D., Rausch, M., Tumbleson, E. and Singh, V. 2006. Starch fermentation characteristics for different proportions of amylose and amylopectin. American Society of Agricultural Bio-Engineering, St. Joseph, Michigan, USA (www.asabe.org).

Sheron, A., Yadav, B.S., Nigam, P. and Singh, D. 1998. Continuous ethanol production from sugarcane molasses using a column reactor of immobilized Saccharomyces cerevisiae HAU-1. Journal of Basic Microbiology, 38: 123-128.

Swain, M.R., Mishra, J. and Thatoi, H. 2013. Bioethanol production from sweet potato (Ipomoea batatas L.) flour using co-culture of Trichoderma sp. and Saccharomyces cerevisiae in solid state fermentation. Brazilian Archives of Biology and Technology, 56: 171-179.

Ward, O.P., and Singh, A. 2002. Bioethanol technology: Developments and perspectives. Advances in Applied Microbiology, 51: 53-80.

Published

2013-10-14

How to Cite

Bioethanol Production From Waste Potatoes Using Bacterium Zymomonas Mobilis Mtcc 2427 . (2013). Applied Biological Research, 15(2), 154–158. https://doi.org/10.48165/