Rare-Earth Nanomaterials For Bio-Probe Applications

Authors

  • Saima Wani Department of Biochemistry, Indian Institute of Science, Bangalore - 560 012, Karnataka (India)
  • Shafquat Majeed Department of Nanotechnology, University of Kashmir, Srinagar - 190 006, Jammu & Kashmir (India)

DOI:

https://doi.org/10.48165/

Keywords:

Fluorescent labelling, MRI imaging, nanomaterials, rare-earths

Abstract

Rare-earth compounds are of immense significance due to the presence of f-orbital electrons and the resultant magnetic, electronic, catalytic,  chemical and optical qualities. This leads to their practical application  in diverse fields, such as luminescent devices or phosphors (component  in LEDs, household compact fluorescent lamps, high-resolution flat  panel displays), medical diagnostics and imaging, biochemical probes,  powerful magnets, sensors, and in the catalysis of some technically  important chemical processes. However, much attention has recently  been devoted to the synthesis of rare-earth-based compounds in  nanometric dimensions that can perform multiple functions, such as  fluorescence imaging, drug delivery, and so on. In this mini review, a  short summary of the applications of rare-earth nanomaterials in the  fluorescent labelling of cells, MRI contrast imaging, and dual imaging  modalities have been discussed. 

Downloads

Download data is not yet available.

References

Ahrén, M., Selegård, L., Söderlind, F., Linares, M., Kauczor, J., Norman, Kall, P.O. and Uvdal, K. 2012. A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: An experimental and theoretical study. Journal of Nanoparticle Research, 14: 1-17.

Caravan, P., Ellison, J.J., McMurry, T.J. and Lauffer, R.B. 1999. Gadolinium (III) chelates as MRI contrast agents: Structure, dynamics and applications. Chemical Reviews, 99: 2293-2352.

Saima Wani and Shafquat Majeed

Chen, G., Qiu, H., Prasad, P.N. and Chen, X. 2014. Upconversion nanoparticles: Design, nanochemistry, and applications in Theranostics. Chemical Reviews, 114: 5161-5214. Cheng, L., Yang, K., Li, Y., Chen, J., Wang, C., Shao, S.T., Lee, M. and Liu, Z. 2011. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual targeted photothermal therapy. Angewandte Chemie, 50: 7385-7390.

Damhus, T., Hartshorn, R.M. and Hutton, A.T. 2005. Nomenclature of inorganic chemistry: IUPAC recommendations. Royal Society of Chemistry, Cambridge, United Kingdom. Das, G., Heng, B., Ng, S., White, T. and Loo, J. 2010. Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir, 26: 8959- 8965.

Eliseeva, S.V. and Bünzli, J.C.G. 2010. Lanthanide luminescence for functional materials and bio sciences. Chemical Society Reviews, 39: 189-227.

Engström, M., Klasson, A., Pedersen, H., Vahlberg, C., Käll, P.O. and Uvdal, K. 2006. High proton relaxivity for gadolinium oxide nanoparticles. Magma (New York), 19: 180-186. Fortin, M.A., Petoral Jr, R.M., Söderlind, F., Klasson, A., Engström, M., Veres, T. and Uvdal, K. 2007. Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5T magnetic resonance clinical scanning. Nanotechnology, 18: 395501-1-395501-9. Gai, S., Li, C., Yang, P. and Lin, J. 2013. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties and biomedical applications. Chemical Reviews, 114: 2343-2389.

Goldys, E.M., Drozdowicz-Tomsia, K., Jinjun, S., Dosev, D., Kennedy, I.M., Yatsunenko, S. and Godlewski, M. 2006. Optical characterization of Eu-doped and undoped Gd2O3 nanoparticles synthesized by the hydrogen flame pyrolysis method. Journal of the American Chemical Society, 128: 14498-14505.

Huang, C., Liu, T., Su, C., Lo, Y., Chen, J. and Yeh, C. 2008. Superparamagnetic hollow and paramagnetic porous Gd2O3 particles. Chemistry of Materials, 20: 3840-3848. Johnson, N.J.J., Oakden, W., Stanisz, G.J., Scott Prosser, R. and van Veggel, F.C.J.M. 2011. Size tunable, ultrasmall NaGdF4 nanoparticles: Insights into their T1 MRI contrast enhancement. Chemistry of Materials, 23: 3714-3722.

Li, Y., Chen, T., Tan, W. and Talham, D.R. 2014. Size-dependent MRI relaxivity and dual imaging with Eu0.2Gd0.8PO4·H2O nanoparticles. Langmuir, 30: 5873-5879.

Louis, C., Bazzi, R., Marquette, C.A., Bridot, J.L., Roux, S., Ledoux, G. and Tillement, O. 2005. Nanosized hybrid particles with double luminescence for biological labeling. Chemistry of Materials, 17: 1673-1682.

Majeed, S., Bashir, M. and Shivashankar, S.A. 2015. Dispersible crystalline nanobundles of YPO4 and Ln (Eu, Tb)-doped YPO4: Rapid synthesis, optical properties and bio-probe applications. Journal of Nanoparticle Research, 17: 1-15.

Majeed, S. and Shivashankar, S.A. 2014. Rapid, microwave-assisted synthesis of Gd2O3 and Eu:Gd2O3 nanocrystals: Characterization, magnetic, optical and biological studies. Journal of Materials Chemistry B, 2: 5585-5593.

McDonald, M.A. and Watkin, K.L. 2006. Investigations into the physicochemical properties of dextran small particulate gadolinium oxide nanoparticles. Academic Radiology, 13: 421-427. Na, H. Bin, Song, I.C. and Hyeon, T. 2009. Inorganic nanoparticles for MRI contrast agents. Advanced Materials, 21: 2133-2148.

Nuñez, N.O., Rivera, S., Alcantara, D., Jesus, M., García-Sevillano, J. and Ocaña, M. 2013. Surface modified Eu: GdVO4 nanocrystals for optical and MRI imaging. Dalton Transactions, 42: 10725-10734.

Park, J.Y., Baek, M.J., Choi, E.S., Woo, S., Kim, J.H., Kim, T.J. and Lee, G.H. 2009. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: Account for large longitudinal relaxivity, optimal particle diameter and in vivo T1 MR images. ACS Nano, 3: 3663-3669.

Rare-earth nanomaterials for bio-probe applications 247

Petoral, Jr, R., Söderlind, F., Klasson, A., Suska, A., Fortin, M.A. and Abrikossova, N. 2009. Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: A bifunctional material with combined fluorescent labeling and MRI contrast agent properties. The Journal of Physical Chemistry C, 113: 6913-6920.

Resch-Genger, U. and Grabolle, M. 2008. Quantum dots versus organic dyes as fluorescent labels. Nature Methods, 5: 763-775.

Reynolds, C.H., Annan, N., Beshah, K., Huber, J.H., Shaber, S.H., Lenkinski, R.E. and Wortman, J.A. 2000. Gadolinium-loaded nanoparticles: new contrast agents for magnetic resonance imaging. Journal of the American Chemical Society, 122: 8940-8945.

Sakai, N., Zhu, L., Kurokawa, A., Takeuchi, H., Yano, S., Yanoh, T. and Ichiyanagi, Y. 2012. Synthesis of Gd2O3 nanoparticles for MRI contrast agents. Journal of Physics: Conference Series, 352: 12008.

Shen, J., Sun, L. and Yan, C.H. 2008. Luminescent rare earth nanomaterials for bioprobe applications. Dalton Transactions, 9226: 5687-5697.

Zhou, L., Gu, Z., Liu, X., Yin, W., Tian, G., Yan, L. and Zhao, Y. 2012. Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. Journal of Materials Chemistry, 22: 966-974.

Published

2017-11-25

How to Cite

Rare-Earth Nanomaterials For Bio-Probe Applications . (2017). Applied Biological Research, 19(3), 241–247. https://doi.org/10.48165/