In Vitro Sporulation, Cultural Characterization, Identification And Phylogeny Of Gray Mold Fungus [Botryotinia Ricini (Godfrey) Whetzel.)] Of Castor (Ricinus Communis L.)

Authors

  • Sujatha T Parvathy ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad - 500 030, Telangana (India)
  • M A Raoof ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad - 500 030, Telangana (India)
  • P Jagadesh ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad - 500 030, Telangana (India)
  • T Jayakrishna ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad - 500 030, Telangana (India)

DOI:

https://doi.org/10.48165/

Keywords:

Amphobotrys ricini, anamorph, culture medium, sporulation, ITS sequence

Abstract

Control of Botryotinia ricini (Godfrey) Whetzel., gray mold pathogen of  castor, is a challenge due to the lack of known sources of complete resistance  and effective disease management practices. Isolation of pure culture of  causal pathogen and its profuse sporulation are imperative for any  pathological or molecular understanding of infection or resistance  mechanisms and host-pathogen interactions. Season-dependent disease  occurrence coupled with sparse conidial production in vitro has been a  serious constraint. A culture medium (BRS) based on V8 juice broth  supplemented with salts and minerals was developed and culture method and  conditions optimized for profuse in vitro sporulation of gray mold fungus.  ITS barcoding identified the isolate from Hyderabad as Amphobotyrs ricini  A. ricini isolate IRHT-S1) which was closely related to A. ricini strain Cop Ar5. Phylogenetic analysis of the isolate with 20 related fungal species  revealed that A. ricini forms a separate clade. Studies on growth response,  culture characteristics and sporulation of A. ricini in different media ingredients revealed that the culture morphology differed with medium composition, especially in medium with 60 g L-1 dextrose, while capsule/ epicarp extract was dispensable. The addition of salts such as MgSO4 (1.0 g  L1), KCl (1.0 g L-1) and FeSO4.7H2O (0.02 g L-1) favoured sporulation. 

Downloads

Download data is not yet available.

References

Amiri, A., Onofre, R.B. and Peres, N.A. 2016. First report of gray mold caused by Botryotinia ricini (Amphobotrys ricini) on strawberry in United States. Plant Disease, 100(5): 1007. Anonymous, 2017. NcoMM Crop Survey Report. Castor. National Collateral Management Services Ltd (NCML), Mumbai, India [http://www.ncml.com/Upload/New/Pdf/9e89b8cf-d905-46d6- ad97-ee874a7dcaf2.pdf].

Blaalid, R., Kumar, S., Nilsson, R.H., Abarenkov, K., Kirk, P.M. and Kauserud, H. 2013. ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources, 13(2): 218-224. Buchwald, N.F. 1949. Studies in the Scletoriniaceae: I. Taxonomy of the Sclerotiniaceae. Kongelige Veterinær- og Landbohøjskole, Aarsskrift, 32: 1-116.

Coutinho, F.F., Macedo, D.M. and Barreto, R.W. 2014. First report of gray mold (Amphobotys ricini) on copperleaf (Acalypha wilkesiana) in Brazil. Plant Disease, 98(2): 276.

Dange, S.R.S., Desai, A.G. and Patel, S.I. 2005. Diseases of castor. pp. 211-234. In: Diseases of Oilseed Crops (eds. G.S. Saharan, N. Mehta and M.S. Sangwan). Indus Publishing Co, New Delhi, India.

Dereeper, A., Gignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefrot, V., Lescot, M., Claverie, J.M. and Gascuel, O. 2008. Phylogeny. fr; robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36: W465-469.

Duarte, D.B., doNascimento, A.T.A. and Soares, D.J. 2013. Amphobotrys ricini causing gray mold on Acalypha herzogiana in Brazil. Australasian Plant Disease Notes, 8 (1): 133-135.

Sujatha T. Parvathy et al.

Elson, M.K., Schisler, D.A. and Jackson, M.A. 1998. Carbon-to-nitrogen ratio, carbon concentration, and amino acid composition of growth media influence conidiation of Helminthosporium solani. Mycologia, 90 (3): 406-413.

Engelkes, C.A., Nuclo, R.L. and Fravel, D.R. 1997. Effect of carbon, nitrogen and C:N ratio on growth, sporulation and biocontrol efficacy of Talaromyces flavus. Phytopathology, 87 (5): 500- 505.

Gao, L. and Liu, X. 2010. Effects of carbon concentrations and carbon to nitrogen ratios on sporulation of two biological control fungi as determined by different culture methods Mycopathologia, 169 (6): 475-481.

Godfrey, G.H. 1923. Gray mold of castor bean. Journal of Agricultural Research, 23 (9): 679-715. Gokulraj, K., Sundaresan, N., Ganeshan, E. J., Rajapriya, P., Muthumary, J., Sridhar, J. and Pandi, M. 2014. Phylogenetic reconstruction of endophytic fungal isolates using internal transcribed spacer 2 (ITS2) region. Bioinformation, 10(6): 320-328.

Hennebert, G.L. 1973. Botrytis and Botrytis-like genera. Persoonia, 7: 183-204. Hong, S.K., Kim, W.G., Cho, W.D. and Kim, H.G. 2001. Occurrence of gray mold in castor bean caused by Botrytis cinerea and Amphobotrys ricini in Korea. Plant Pathology Journal, 17 (6): 357-360.

Ibrahim, S. and Rahma, M.A. 2009. Isolation and identification of fungi associated with date fruits (Phoenix dactylifera, Linn.) sold at Bayero University, Kano, Nigeria. Bajopas, 2(3): 127-130. Iotti, M., Barbieri, E., Stocchi, V. and Zambonelli, A. 2005. Morphological and molecular characterisation of mycelia of ectomycorrhizal fungi in pure culture. Fungal Diversity, 19: 51- 68.

Iwen, P.C., Hinrichs, S.H. and Rupp, M.E. 2002. Utilisation of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Medical Mycology, 40: 87- 109.

Jackson, M. and Bothast, R.J. 1990. Carbon concentration and carbon-to-nitrogen ratio influence submerged-culture conidiation by the potential bioherbicide Colletotrichum truncatum NRRL 13737. Applied and Environmental Microbiology, 56: 3435-3438.

Kadir, J.B., Ahmad, A., Sariah, M. and Juraimi, A.S. 2007. Fungal pathogen of Rottboellia cochinchinensis and its potential as a bioherbicide. Asian Journal of Plant Sciences, 6: 21-28. Lalève, A., Gamet, S., Walker, A.S., Debieu, D., Toquin, V. and Fillinger, S. 2014. Site-directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding. Environmental Microbiology, 16: 2253-2266.

Mo, M., Xu, C. and Zhang, K. 2005. Effects of carbon and nitrogen sources, carbon-to-nitrogen ratio, and initial pH on the growth of nematophagous fungus Pochonia chlamydosporia in liquid culture. Mycopathologia, 159: 381-389.

Parvathy, S.T., Raoof, M.A. and Prasad, R.D. 2013. In vitro sporulation of grey rot pathogen of castor and development of a screening method for Botrytis grey rot under artificial epiphytotic conditions. DOR Newsletter, 19 (1): 8.

Parvathy, S.T., Raoof, M.A., Jagadesh, P and Douglas, B. 2016. A simple method for screening gray mold of castor (Ricinus communis L.) under artificial conditions. Applied Biological Research, 18(2): 131-138.

Prasad, R.D. and Bhuvaneshwari, R. 2014. A modified medium for improved sporulation of gray mold pathogen Botryotinia ricini (Godfrey) Whetzel in castor (Ricinus communis L). Journal of Oilseeds Research, 31: 79-81.

Sanoamuang, N. 1996. First report of gray mold blight caused by Amphobotrys ricini on crown of thorns in Thailand. Plant Disease, 80 (2): 223.

Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W. and Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region

In vitro sporulation and characterization gray mold pathogen of castor 117

as a universal DNA barcode marker for fungi. Proceedings of National Academic Science USA, 109(16): 6241-6246.

Shah, K. and Anish, G. 2017. Castor Seed Market Analysis and outlook 2017. Nirmal Bang Commodities Pvt Ltd, Mumbai, India. [https://www.nirmalbang.com/Upload/Castor_Seed_ Market_Analysis_and_Outlook_2017.pdf]

Sharma, M., Ghosh, R., Tarafdar, A. and Telangre, R. 2015. An efficient method for zoospore production, infection and real-time quantification of Phytophthora cajani causing Phytophthora blight disease in pigeon pea under elevated atmospheric CO2. BMC Plant Biology, 15: 90.

Sheila, V.K. and Nene, Y.L. 1987. A culture medium for spore production by Botrytis cinerea isolated from chickpea. Chickpea Newsletter, 17: 30.

Soares, D.J. 2012. Gray mold of castor: A review. pp. 219-240. In: Plant Pathology (ed. C.J.R. Cumagun). InTech, Rijecka. {DOI: 10.5772/30806}.

Staats, M., van Baarlen, P. and van Kan, J.A.L. 2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Molecular Biology and Evolution, 22: 333- 346.

Sugita, T. and Nishikawa, A. 2003. Fungal identification method based on DNA sequence analysis: Reassessment of the methods of the Pharmaceutical Society of Japan and the Japanese Pharmacopoeia. Journal of Health Science, 49: 531-533.

Whetzel, H.H. 1945. A synopsis of the genera and species of the Sclerotiniaceae, a family of stromatic inoperculate discomycetes. Mycologia, 37(6): 648-714.

White, T.J., Bruns, T., Lee, S and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In: PCR Protocols: A Guide to Methods and Applications (eds. M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White). Academic Press, San Diego, USA.

Yu, L., Zhang, J., Xu, F., Yang, L and Li, G.Q. 2012. First report of Amphobotrys ricini causing gray mold disease on Acalypha australis in central China. Plant Disease, 96(3): 460.

Published

2018-06-03

How to Cite

In Vitro Sporulation, Cultural Characterization, Identification And Phylogeny Of Gray Mold Fungus [Botryotinia Ricini (Godfrey) Whetzel.)] Of Castor (Ricinus Communis L.) . (2018). Applied Biological Research, 20(2), 105–117. https://doi.org/10.48165/