Olive (Olea Europaea L.) Leaf Extract Boosts Antioxidant Status And Attenuates Hepatic And Pancreatic Changes In Diabetic Rats
DOI:
https://doi.org/10.48165/Keywords:
Antioxidant, diabetics, 8-OHdG, hepatoprotective, oliveAbstract
The purpose of this study was to evaluate the antioxidant, oxidative DNA damage and hepatoprotective effects of olive (Olea europaea L.) leaf extract (OLE) on experimental diabetic rats. These effects of OLE were studied using streptozocin-induced diabetic rats. Antioxidant enzyme activities, oxidative DNA damage analysis and protein oxidation were evaluated spectrophotometrically methods. In addition, histological examination of the liver and pancreas was performed routinely with paraffin embedding and staining method. Protein carbonyl level and 8-hydroxy-2' – deoxyguanosine (8-OHdG) concentration decreased in OLE administrated group compared to diabetic group. Further, OLE treatment significantly increased superoxide dismutase and glutathione peroxidase activities. It was observed that OLE remarkably attenuated degenerative and necrotic changes in liver and pancreatic tissues. Consequently, it appears that OLE strengthens the antioxidant defense system, protects against oxidative DNA damage, and has a hepatoprotective effect on diabetic rats.
Downloads
References
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105: 121-126.
Al-Attar, A.M., Alrobai, A.A. and Almalki, D.A. 2017. Protective effect of olive and juniper leaves extracts on nephrotoxicity induced by thioacetamide in male mice. Saudi Journal of Biological Sciences, 24: 15-22.
Amabeoku, G.J. and Bamuamba, K. 2010. Evaluation of the effects of Olea europaea L. subsp. Africana (Mill.) P.S. Green (Oleaceae) leaf methanol extract against castor oil-induced diarrhoea in mice. Journal of Pharmacy and Pharmacology, 62: 368-373.
Andreadou, I., Sigala, F., Iliodromitis, E.K., Papaefthimiou, M., Sigalas, C., Aligiannis, N., Savvari, P., Gorgoulis, V., Papalabros, E. and Kremastinos, D.T. 2007. Acute doxorubicin cardio toxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. Journal of Molecular and Cellular Cardiology, 42: 549-558.
Ayepola, O.R., Brooks, N.L. and Oguntibeju, O.O. 2014. Antioxidant-antidiabetic agents and human health. pp. 2337. In: Oxidative Stress and Diabetic Complications: The Role of Antioxidant Vitamins and Flavonoids. 5 Feb., 2014, Intech Open, London, United Kingdom.
Beutler, E., Duron, O. and Kelly, B.M. 1963. Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61: 882-888.
Bock, M.D., Thorstensen, E.B., Derraik, J.G.B., Henderson, H.V., Hofman, P.L. and Cutfield, W.S. 2013. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Molecular Nutrition & Food Research, 57: 2079-2085.
Ceriello, A. 2005. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes, 54: 1-7.
Chen, H., Sun, C., Guo, W., Meng, R., Du, H., Qi, Q., Gu, X., Li, L., Zhang, K., Zhu, D. and Wang, Y. 2011. AluYb8 insertion in the MUTYH gene is related to increased 8-OHdG in genomic DNA and could be a risk factor for type 2 diabetes in a Chinese population. Molecular and Cellular Endocrinology, 332: 301-305.
Choudhury, H., Pandey, M., Hua, C.K., Mun, C.S., Jing, J.K., Kong, L., Ern, L.Y., Ashraf, N.A., Kit, S.W., Yee, T.S., Pichika, M.R., Gorain, B. and Kesharwani, P. 2018. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine, 8: 361-376.
Domitrovic, R., Jakovac, H., Marchesi, V.V., Sain, I., Romic, Z. and Rahelic, D. 2012. Preventive and therapeutic effects of oleuropein against carbon tetrachloride-induced liver damage in mice. Pharmacological Research, 65: 451-464.
Eidi, E., Eidi, M. and Darzi, R. 2009. Antidiabetic effect of Olea europaea L. in normal and diabetic rats. Phytotherapy Research, 23: 347-350.
Mehmet Ali Temiz and Atilla Temur
Esmailidehaj, M., Bajoovand, S., Rezvani, M.E., Sherifidehaj, M., Hafezimoghadam, Z. and Hafizibarjin, Z. 2016. Effect of oleuropein on myocardial dysfunction and oxidative stress induced by ischemic-reperfusion injury in isolated rat heart. Journal of Ayurveda and Integrative Medicine, 7: 224-230.
Gilani, A.H., Khan, A. and Ghayur, M.N. 2006. Ca+2 antagonist and cholinergic activities explain the medicinal use of olive in gut disorders. Nutrition Research, 26: 277-283. Girija, K., Lakshman, K., Chandrika, U., Ghosh, S.S. and Divya T. 2011. Anti-diabetic and anti cholesterolemic activity of methanol extracts of three species of Amaranthus. Asian Pacific Journal of Tropical Biomedicine, 1: 133-138.
Hamden, K., Allouche, N., Damak, M. and El Feki, A. 2009. Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chemico-Biological Interactions, 180: 421-432.
Harvey, R.A. and Ferrier, D.R. 2011. Lippincott’s Illustrated Reviews: Biochemistry. Lippincott Williams & Wilkins, Hong Kong.
Hegde, S.V., Adhikari, P., Nandini, M. and D’Souza, V. 2013. Effect of daily supplementation of fruits on oxidative stress indices and glycaemic status in type 2 diabetes mellitus. Complementary Therapies in Clinical Practice, 19: 97-100.
Irudayaraj, S.S., Sunil, C., Duraipandiyan, V. and Ignacimuthu, S. 2012. Antidiabetic and antioxidant activities of Toddalia asiatica (L.) Lam. leaves in Streptozotocin induced diabetic rats. Journal of Ethnopharmacology, 143: 515-523.
Jemai, H., El Feki, A. and Sayadi, S. 2009. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. Journal of Agricultural and Food Chemistry, 57: 8798-8804.
Jiménez-Zamora, A., Delgado-Andrade, C. and Rufián-Henares, J.A. 2016. Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion. Food Chemistry, 199: 339-346.
Kendall, M., Batterham, M., Obied, H., Prenzler, P.D., Ryan, D. and Robards, K. 2009. Zero effect of multiple dosage of olive leaf supplements on urinary biomarkers of oxidative stress in healthy humans. Nutrition, 25: 270-280.
Kume, E., Fujimura, H., Matsuki, N., Ito, M., Aruga, C., Toriumi, W., Kitamura, K. and Doi, K. 2004. Hepatic changes in the acute phase of streptozotocin (SZ)-induced diabetes in mice. Experimental and Toxicologic Pathology, 55: 467-480.
Kumral, A., Giriş, M., Soluk-Tekkeşin, M., Olgaç, V., Doğru-Abbasoğlu, S., Türkoğlu, Ü. and Uysal, M. 2015. Effect of olive leaf extract treatment on doxorubicin-induced cardiac, hepatic and renal toxicity in rats. Pathophysiology, 22: 117-123.
Kuzuya, T., Nakagawa, S., Satoh, J., Kanazawa, Y., Iwamoto, Y., Kobayash Nanjo, K., Sasaki, A., Seino, Y., Ito, C., Shima, K., Nonaka, K. and Kadowaki, T. 2002. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Research and Clinical Practice, 55: 65-85.
Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S. and Stadtman, E.R. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186: 464-478.
Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H. and Chen, S. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 21: 1374.
Lowry, O.H., Rosebrough, W.I., Farr, A.L. and Randall, R.J. 1951. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193: 265-275.
Masella, R., Varì, R., D’Archivio, M., Di Benedetto, R., Matarrese, P., Malorni, W., Scazzocchio, B. and Giovannini, C. 2004. Extra virgin olive oil biophenols inhibit cell-mediated oxidation of LDL by increasing the mRNA transcription of glutathione-related enzymes. The Journal of Nutrition, 134: 785-791.
Olive leaf boosts antioxidant status and attenuates histological changes 19
McCord, J.M. and Fridovich, I. 1969. Superoxide dismutase: An enzymic function for erythrocuprein (Hemocuprein). The Journal of Biological Chemistry, 244: 6049-6055. Moskaug, J.O., Carlsen, H., Myhrstad, M.C. and Blomhoff, R. 2005. Polyphenols and glutathione synthesis regulation. The American Journal of Clinical Nutrition, 81: 277-283. Osman, I.H. and Tantawy, A.A. 2017. Comparative evaluation of antioxidant and hepatoprotective effects of three olive leave species cultivated in Aljouf Region, Saudi Arabia. The Egyptian Journal of Hospital Medicine, 69: 3083-3091.
Paglia, D.E. and Valentine, W.N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70: 158- 169.
Patel, D.K., Prasad, S.K., Kumar, R. and Hemalatha, S. 2012. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2: 320-330.
Sabu, M.C., Smitha, K. and Kuttan, R. 2002. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. Journal of Ethnopharmacology, 83: 109-116.
Şahin, S., Samli, R., Tan, A.S.B., Barba, F.J., Chemat, F., Cravotto, G. and Lorenzo, J.M. 2017. Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules, 22: 1056.
Santangelo, C., Filesi, C., Varì, R., Scazzocchio, B., Filardi, T., Fogliano, V., D’Archivio, M., Giovannini, C., Lenzi, A., Morano, S. and Masella, R. 2016. Consumption of extra‑virgin olive oil rich in phenolic compounds improves metabolic control in patients with type 2 diabetes mellitus: a possible involvement of reduced levels of circulating visfatin. Journal of Endocrinological Investigation, 39: 1295-1301.
Sumiyoshi, M. and Kimura, Y. 2010. Effects of olive leaf extract and its main component oleuroepin on acute ultraviolet B irradiation-induced skin changes in C57BL/6J mice. Phytotherapy Research, 24: 995-1003.
Tabak, O., Gelisgen, R., Erman, H., Erdenen, F., Muderrisoglu, C., Aral, H. and Uzun, H. 2011. Oxidative lipid, protein, and DNA damage as oxidative stress markers in vascular complications of Diabetes Mellitus. Clinical & Investigative Medicine, 34: 163-171.
Tomas, E., Lin, Y., Dagher, Z., Saha, A., Luo, Z., Ido, Y. and Ruderman, N.B. 2002. Hyperglycemia and insulin resistance: Possible mechanisms. Annals of the New York Academy of Sciences, 967: 43-51.
Tomlinson, D.R. and Gardiner, N.J. 2008. Glucose neurotoxicity. Nature Reviews Neuroscience, 9: 36-45.
Vina, J., Borras, C., Gomez-Cabrera, M.C. and Orr, W.C. 2006. Role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress. Free Radical Research, 40: 111-119.
Wainstein, J., Ganz, T., Boaz, M., Dayan B.Y., Dolev, E., Kerem, Z. and Madar, Z. 2012. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. Journal of Medicinal Food, 15(7): 1-6.
Weinbrenner, T., Fito, M., de la Torre, R., Saez, G.T., Rijken, P., Tormos, C., Coolen, S., Albaladejo, M.F., Abanades, S., Schroder, H., Marrugat, J. and Covas, M.I. 2004. Olive oils high in phenolic compounds modulate oxidative/antioxidative status in men. The Journal of Nutrition, 134: 2314-2321.