Isolation And Characterization Of Α–L-Rhamnosidase Producing Bacterium, Agrococcus Sp. Bkd37, From A Warehouse Soil And Partial Optimization Of Its Culture Conditions

Authors

  • Bhaba Kumar Pegu Department of Life Sciences, Dibrugarh University, Dibrugarh – 786 004, Assam (India)
  • Devid Kardong Department of Life Sciences, Dibrugarh University, Dibrugarh – 786 004, Assam (India)
  • Pankaj Chetia Department of Life Sciences, Dibrugarh University, Dibrugarh – 786 004, Assam (India)
  • Jitu Chutia Department of Life Sciences, Dibrugarh University, Dibrugarh – 786 004, Assam (India)
  • Dip Kumar Gogoi Biotechnology Division, Central Muga Eri Research & Training Institute, Central Silk Board, Lahdoigarh, Jorhat – 785 700, Assam (India)

DOI:

https://doi.org/10.48165/

Keywords:

Agrococcus sp, α-L-rhamnosidase, bacterium, characterization, warehouse soil

Abstract

The present study was attempted to identify and partially optimize the culture conditions of a potential α-L-rhamnosidase producing bacterium isolated from warehouse soil of Dibrugarh, Assam (India). Twenty eight bacterial strains were isolated and the isolate BKD37 showed maximum  rhamnosidase enzyme activity (10.01 ± 0.001 U mL-1) in crude culture  medium. The 16S rRNA gene sequencing and phylogenetic analysis of  BKD37 strain showed maximum similarity with that of Agrococcus sp. The  culture conditions of strain BKD37 for the production of extracellular  rhamnosidase enzyme was partially optimized in a basal medium in shake  flask. The maximum rhamnosidase production was achieved after 60 h  incubation at 30oC and pH 6.0. The rhamnose and NH4NO3 were found to  e the best carbon and nitrogen sources, respectively, in basal medium for  α-L rhamnosidase enzyme production.  

Downloads

Download data is not yet available.

References

Arcus, V.L., Prentice, E. J., Hobbs, J.K., Mulholland, A.J., Van der Kamp, M.W., Pudney, C.R. and Schipper, L.A. 2016. On the temperature dependence of enzyme-catalyzed rates. Biochemistry, 55: 1681-1688.

Avila, M., Jaquet, M., Moine, D., Requena, T., Pelaez, C., Arigoni, F. and Jankovic, I. 2009. Physiological and biochemical characterization of the two α-L-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology, 155: 2739-2749.

Beekwilder, J., Marcozzi, D., Vecchi, S., de Vos, R., Janssen, P., Francke, C. and Hall, R.D. 2009. Characterization of rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. Applied and Environmental Microbiology, 75: 3447-3454.

Behrendt, U., Schumann, P. and Ulrich, A. 2008. Agrococcus versicolo sp. nov., an Actinobacterium associated with the phyllosphere of potato plants. International Journal of Systematic and Evolutionary Microbiology, 58: 2833–2838.

Bergey, D.H. 2005. Bergey’s Manual of Systematic Bacteriology. Springer Press, New York, USA. Booth, I.R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiological Reviews, 49: 359. Bora, N., Vancanneyt, M., Gelsomino, R., Swings, J., Brennan, N., Cogan, T.M. and Ward, A.C.

Agrococcus casei sp. nov., isolated from the surfaces of smear-ripened cheeses. International Journal of Systematic and Evolutionary Microbiology, 57: 92-97. Buyer, J.S. 2002. Rapid sample processing and fast gas chromatography for identification of bacteria by fatty acid analysis. Journal of Microbiol Methods, 51: 209-215.

Chapman, J., Ismail, A.E., and Dinu, C.Z. 2018. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 8: 6-238.

Bhaba Kumar Pegu et al.

Cui, Z., Maruyama, Y., Mikami, B., Hashimoto, W. and Murata, K. 2007. Crystal structure of glycoside hydrolase family 78 α- L-rhamnosidase from Bacillus sp. GL1. Journal of Molecular Biology, 374: 384-398.

De Lise, F., Mensitieri, F., Tarallo, V., Ventimiglia, N., Vinciguerra, R., Tramice, and Molinaro, A. 2016. RHA-P: Isolation, expression and characterization of a bacterial α-L-rhamnosidase from Novosphingobium sp. PP1Y. Journal of Molecular Catalysis B: Enzymatic, 134: 136-147.

De Winter, K., Šimčíková, D., Schalck, B., Weignerová, L., Pelantova, H., Soetaert, W., Desmet, T. and Křen, V., 2013. Chemoenzymatic synthesis of α-L-rhamnosides using recombinant α-L rhamnosidase from Aspergillus terreus. Bioresource Technology, 147: 640-664.

Dhanjal, S., Kaur, I., Korpole, S., Schumann, P., Cameotra, S.S., Pukall, R. and Mayilraj, S. 2011. Agrococcus carbonis sp. nov., isolated from soil of a coal mine. International Journal of Systematic and Evolutionary Microbiology, 61: 1253-1258.

Diomandé S.E., Nguyen-The C., Guinebretière M.H., Broussolle V. and Brillard J. 2015. Role of fatty acids in Bacillus environmental adaptations. Frontiers in Microbiology, 6: 813. Elinbaum, S., Ferreyra, H., Ellenrieder, G. and Cuevas, C. 2002. Production of Aspergillus terreus α‐ L‐rhamnosidase by solid state fermentation. Letters in Applied Microbiology, 34: 67-71. Feng, B., Ma, B., Kang, L., Xiong, C. and Wang, S. 2005. The microbiological transformation of steroidal saponins by Curvularia lunata. Tetrahedron, 61: 11758-11763.

Ge, L., Xie, J., Wu, T., Zhang, S., Zhao, L., Ding, G., and Xiao, W. 2017. Purification and characterization of a novel α-L-rhamnosidase exhibiting transglycosylating activity from Aspergillus oryzae. International Journal of Food Science & Technology, 52: 2596-2603.

German, D.P., Weintraub, M.N., Grandy, A.S., Lauber, C.L., Rinkes, Z.L. and Allison, S.D. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 43: 1387-1397.

Groth I., Schumann P., Weiss N., Martin K. and Rainey F.A. 1996. Agrococcus jenensis gen. nov., sp. nov., a new genus of Actinomycetes with diaminobutyric acid in the cell wall. International Journal of Systemic Bacteriology, 46 :234-239.

Hashimoto,W.andMurata,K.1998. α-L-rhamnosidase of Sphingomonas sp. R1 producing an unusual exopolysaccharide of sphingan. Bioscience, Biotechnology and Biochemistry, 62: 1068-1074. Holman, M.C. 1989. Autoclave age forming large aluminum aircraft panels. Journal of Mechanical Working Technology, 20: 477-488.

Ichinose, H., Fujimoto, Z. and Kaneko, S. 2013. Characterization of an α-L-rhamnosidase from Streptomyces avermitilis. Bioscience, Biotechnology and Biochemistry, 77: 213-216. Itoh, T., Akao, S., Hashimoto, W., Mikami, B. and Murata, K. 2004. Crystal structure of unsaturated glucuronyl hydrolase, responsible for the degradation of glycosaminoglycan, from Bacillus sp. GL1 at 1.8 Å resolutions. Journal of Biological Chemistry, 279: 31804-31812. Jang, I.S. and Kim, D.H. 1996. Purification and characterization of α-L-rhamnosidase from Bacteroides JY-6, a human intestinal bacterium. Biological and Pharmaceutical Bulletin, 19: 1546-1549.

Koseki, T., Mese, Y., Nishibori, N., Masaki, K., Fujii, T., Handa, T. and Iefuji, H. 2008. Characterization of an α-L-rhamnosidase from Aspergillus kawachii and its gene. Applied Microbiology and Biotechnology, 80: 1007.

Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870-1874. Lee, S.D. 2008. Agrococcus jejuensis sp. nov., isolated from dried seaweed. International Journal of Systematic and Evolutionary Microbiology, 58: 2297-2300.

Li, H. and Cao, Y. 2010. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids, 39: 1107-1116.

Liu, W.T., Marsh, T.L., Cheng, H. and Forney, L.J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA.

Characterization of α–L-rhamnosidase producing bacterium Agrococcus sp. BKD37 213

Applied and Environmental Microbiology, 63: 4516-4522.

Logue, J.B., Findlay, S.E. and Comte, J. 2015. Microbial responses to environmental changes, Frontiers in Microbiology, 6: 1364.

Lyngwi, N.A., Nongkhlaw, M., Kalita, D. and Joshi, S.R. 2016. Bioprospecting of plant growth promoting Bacilli and related genera prevalent in soils of pristine sacred groves: biochemical and molecular approach. PLoS One, 11:4- e0152951.

Manzanares, P., Vallés, S. Ramòn, D. and Orejas, M. 2007. α-L-Rhamnosidases: Old and new insights. pp. 117-140. In: Industrial Enzymes Springer, Dordrecht, the Netherlands. Manzanares, P., Van den Broeck, H.C., de Graaff, L.H. and Visser, J. 2001. Purification and characterization of two different α-L-rhamnosidases, RhaA and RhaB, from Aspergillus aculeatus. Applied and Environmental Microbiology, 67: 2230-2234.

Mayilraj, S., Suresh, K., Schumann, P., Kroppenstedt, R.M. and Saini, H.S. 2006. Agrococcus lahaulensis sp. nov., isolated from a cold desert of the Indian Himalayas. International Journal of Systematic and Evolutionary Microbiology, 56: 1807-1810.

Miake, F., Murata, K., Kuroiwa, A., Kumamoto, T., Kuroda, S., Terasawa, T. and Watanabe, K. 1995. Characterization of Pseudomonas paucimobilis FP2001 which forms flagella depending upon the presence of rhamnose in liquid medium. Microbiology and Immunology, 39: 437-442.

Michlmayr, H., Brandes, W., Eder, R., Schümann, C., Andrés, M. and Kulbe, K.D. 2011. Characterization of two distinct glycosyl hydrolase family 78 α-L-rhamnosidases from Pediococcus acidilactici. Applied and Environmental Microbiology, 77: 6524-6530.

Mukherjee, S., Das, P. and Sen, R. 2009. Rapid quantification of a microbial surfactant by a simple turbidometric method. Journal of Microbiological Methods, 76: 38-42.

Mukund, P. Belur, P.D. and Saidutta, M.B. 2014. Productions of naringinase from a new soil isolate Bacillus methylotrophicus: Isolation, optimization and scale-up studies. Preparative Biochemistry and Biotechnology, 44: 146-163.

Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A. and Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853-858.

Ni, Hui, Huinong Cai, Anfeng Xiao, Feng Chen, Qi You, and Yaqi W. 2011. Improved purification of α-L-rhamnosidase from Aspergillus niger. World Journal of Microbiology and Biotechnology, 27: 2011-2539.

O’Leary W.M. 1962. The fatty 26 acids of bacteria. Bacteriological Reviews, 8: 421-447. Orejas, M.,Ibáñez, E. and Ramón, D. 1999. The filamentous fungus Aspergillus nidulans produces an α‐L‐rhamnosidase ofpotential oenologicalinterest. LettersinAppliedMicrobiology, 28:383-388. Orrillo, A.G., Ledesma, P., Delgado, O.D., Spagna, G. and Breccia, J.D. 2007. Cold-active α-L rhamnosidase from psychrotolerant bacteria isolated from a sub-Antarctic ecosystem. Enzyme and Microbial Technology, 40: 236-241.

Park, S., Kim, J. and Kim, D. 2005.Purification and characterization of quercitrin-hydrolyzing alpha L-rhamnosidase from Fusobacterium K-60, a human intestinal bacterium. Journal of Microbiology and Biotechnology, 15: 519–524.

Petrosino, J.F., Highlander, S., Luna, R.A., Gibbs, R.A. and Versalovic, J. 2009. Metagenomic pyrosequencing and microbial identification. Clinical Chemistry, 55: 856-866. Puri, M. and Kaur, A. 2010. Molecular identification of Staphylococcus xylosus MAK2, a new α-L rhamonosidase producer. World Journal of Microbiology and Biotechnology, 26: 963-968. Puri, M., Kaur, A., Barrow, C.J. and Singh, R.S. 2011. Citrus peel influences the production of an extracellular naringinase by Staphylococcus xylosus MAK2 in a stirred tank reactor. Applied Microbiology and Biotechnology, 89: 715-722.

Rajal, V.B., Cid, A.G., Ellenrieder, G. and Cuevas, C.M. 2009. Production, partial purification and characterization of α-L-rhamnosidase from Penicillium ulaiense. World Journal of Microbiology and Biotechnology, 25: 1025-1033.

Bhaba Kumar Pegu et al.

Ratledge, C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86: 807-815.

Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-425.

Shanmugam, V. and Yadav, K.D. 1995. Extracellular production of alpha-rhamnosidase by Rhizopus nigricans. Indian Journal of Experimental Biology, 33: 705-707.

Singh, P., Sahota, P.P. and Singh, R.K. 2015. Evaluation and characterization of new α-L-rhamno sidase-producing yeast strains. Journal of General and Applied Microbiology, 61: 149-156. Singh, P., Sahota, P.P. and Singh, R.K. 2018. Optimization of media components for production of α-L-rhamnosidase from Clavispora lusitaniae KF633446. International Journal of Current Microbiology and Applied Sciences, 7: 2947-2959.

Singh, T.A., Devi, K.R., Ahmed, G. and Jeyaram, K. 2014. Microbial and endogenous origin of fibrinolytic activity in traditional fermented foods of Northeast India. Food Research International, 55: 356-362.

Soria, F., Ellenrieder, G., Oliveira, G.B., Cabrera, M. and Carvalho, L.B. 2012. α-L-rhamnosidase of Aspergillus terreus immobilized on ferromagnetic supports. Applied Microbiology and Biotechnology, 93: 1127-1134.

Thammawat, K., Pongtanya, P., Juntharasri, V. and Wong V.P. 2008. Isolation, preliminary enzyme characterization and optimization of culture parameters for production of naringinase isolated from Aspergillus niger BCC 25166. Kaestsart Journal Natural Science, 42: 61-72.

Tonato, D., Marcuz, C., Vendruscolo, R.G., Bevilacqua, C., Jacques, R.J.S., Wagner, R., Kuhn, R.C. and Mazutti, M.A. 2018. Production of polyunsaturated fatty acids by microorganisms isolated in the Brazilian pampa biome. Brazilian Journal of Chemical Engineering, 35: 835-846.

Wang, D., Zheng, P. and Chen, P. 2019. Production of a recombinant α-L-rhamnosidase from Aspergillus niger CCTCC M 2018240 in Pichia pastoris. Applied Biochemistry and Biotechnology, 189: 1020-1037.

Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173: 697-703.

Wieser M., Schumann P., Martin K., AItenburger P., Burghardte J., Lubitz' W. and Busse H.J. 1999. Agrococcus citreus sp. nov., isolated from a medieval wall painting of the chapel of Castle Herberstein (Austria). International Journal of Systematic Bacteriology, 49: 165-170.

Yadav, V., Yadav, P.K., Yadav, S. and Yadav, K.D.S. 2010. α-L-rhamnosidase: A review. Process Biochemistry, 45: 1226-1235.

Yanai, T. and Sato, M. 2000. Purification and characterization of α-L-rhamnosidase from Pichia angusta X349. Bioscience Biotechnology Biochemistry, 64: 2179-2185.

Zhang, T., Yuan, W., Li, M., Miao, M. and Mu, W. 2018. Purification and characterization of an intracellular α-L-rhamnosidase from a newly isolated strain, Alternaria alternata SK37. 001. Food Chemistry, 269: 63-69.

Zhang, J.Y., Liu, X.Y. and Liu, S.J. 2010. Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 60: 1897-1903.

Zlamala, C., Schumann, P., Kämpfer, P., Rosselló-Mora, R., Lubitz, W. and Busse, H.J. 2002. Agrococcus baldri sp. nov., isolated from the air in the 'Virgilkapelle' in Vienna. International Journal of Systematic and Evolutionary Microbiology, 52: 1211-1216.

Zverlov, V.V., Hertel, C., Bronnenmeier, K., Hroch, A., Kellermann, J. and Schwarz, W.H. 2000. The thermostable α-L-rhamnosidase RamA of Clostridium stercorarium: Biochemical characterization and primary structure of a bacterial α-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Molecular Microbiology, 35: 173-179.

Published

2020-11-03

How to Cite

Isolation And Characterization Of Α–L-Rhamnosidase Producing Bacterium, Agrococcus Sp. Bkd37, From A Warehouse Soil And Partial Optimization Of Its Culture Conditions . (2020). Applied Biological Research, 22(3), 203–214. https://doi.org/10.48165/