Mitochondrial Dna Methylation: A Possible Breach In Pathophysiology Of Cardiovascular Diseases

Authors

  • Nilanjana Ghosh Genomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Timarpur, Delhi -110 054 (India)
  • Vinay Kumar Genomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Timarpur, Delhi -110 054 (India)
  • Swati Srivastava Genomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Timarpur, Delhi -110 054 (India)
  • Lilly Ganju Genomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Timarpur, Delhi -110 054 (India)
  • Iti Garg Genomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Timarpur, Delhi -110 054 (India)

DOI:

https://doi.org/10.48165/

Keywords:

Cardiovascular diseases, patho-physiology, methylation, mitochondrial DNA

Abstract

Cardiovascular diseases (CVD) are a cluster of diseases that hamper cardio vascular system and may lead to death. Several injuries and risk factors like  obesity correspond to the malfunctioning of heart and blood vessels that lead to  the condition of stroke, myocardial infarction, deep vein thrombosis (DVT), etc.  Only a few studies have depicted the role of mitochondrial genes and their  epigenetic regulation in DVT. The association of certain mitochondrial genes of  electron transport chain and oxidative phosphorylation has been reported in  Expression of these genes is regulated by DNA methylation. Obesity not  only influences the CVD but also has been found responsible for alteration in  mtDNA methylation. In present study, of the 5182 research articles, only 13 and  4 papers were found dealing with the qualitative and quantitative analysis,  respectively. MT-CO1, MT-CO2, MT-CO3, MT-TL1 and PPARGC1 genes were  noted to be involved in disease condition. The mitochondrial DNA methylation  has profound impact on mitochondrial gene expression which may lead to the  development of dysfunctional mitochondria and cause the development of  various cardiovascular diseases. In present paper, a systemic analysis was done  with the hypothesis that mitochondrial DNA methylation has an intriguing role  in the occurrence of several CVDs in relation to obesity. 

Downloads

Download data is not yet available.

References

Andreassi, M.G., Botto, N., Colombo, M.G., Biagini, A. and Clerico, A. 2000. Genetic instability and atherosclerosis: Can somatic mutations account for the development of cardiovascular diseases? Environmental and Molecular Mutagenesis, 35(4): 265-269.

Nilanjana Ghosh et al.

Aoi, W., Naito, Y., Mizushima, K., Takanami, Y., Kawai, Y., Ichikawa, H. and Yoshikawa, T. 2010. The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. American Journal of Physiology - Endocrinology and Metabolism, 298(4): E799-E806.

Baccarelli, A., Wright, R., Bollati, V., Litonjua, A., Zanobetti, A., Tarantini, L. and Schwartz, J. 2010. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology (Cambridge, Mass.), 21(6): 819-828.

Baccarelli, A.A. and Byun, H.M. 2015. Platelet mitochondrial DNA methylation: A potential new marker of cardiovascular disease. Clinical Epigenetics, 7(1): 1-9.

Barquera, S., Pedroza-Tobías, A., Medina, C., Hernández-Barrera, L., Bibbins-Domingo, K., Lozano, R. and Moran, A.E. 2015. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Archives of Medical Research, 46(5): 328-338.

Böhm, M., Pronicka, E., Karczmarewicz, E., Pronicki, M., Piekutowska-Abramczuk, D., Sykut Cegielska, J., Mierzewska, H., Hansikova, H., Vesela, K., Tesarova, M., Houstkova, H., Houstek, J. and Zeman, J. 2006. Retrospective, multicentric study of 180 children with cytochrome C oxidase deficiency. Paediatric Research, 59(1): 21-26.

Bordoni, L., Petracci, I., Mlodzik-Czyzewska, M., Malinowska, A.M., Szwengiel, A., Sadowski, M., Gabbianelli, R. and Chmurzynska, A. 2022. Mitochondrial DNA and epigenetics: Investigating interactions with the one-carbon metabolism in obesity. Oxidative Medicine and Cellular longevity, 2022, 9171684. [https://doi.org/10.1155/2022/9171684].

Bordoni, L., Smerilli, V., Nasuti, C. and Gabbianelli, R. 2019. Mitochondrial DNA methylation and copy number predict body composition in a young female population. Journal of Translational Medicine, 17: 1-11.

Corsi, S., Iodice, S., Vigna, L., Cayir, A., Mathers, J.C., Bollati, V. and Byun, H.M. 2020. Platelet mitochondrial DNA methylation predicts future cardiovascular outcome in adults with overweight and obesity. Clinical Epigenetics, 12: 1-11.

Diaz-Vegas, A., Sanchez-Aguilera, P., Krycer, J.R., Morales, P.E., Monsalves-Alvarez, M., Cifuentes, M. and Lavandero, S. 2020. Is mitochondrial dysfunction a common root of non communicable chronic diseases? Endocrine Reviews, 41(3): bnaa005. [https://doi.org/10.1210/endrev/bnaa005].

Elinor J.G. 2012. Mitochondria and Heart Disease, 942. 249-267. [https://doi.org/10.1007/978-94- 007-2869-1_11].

Feng, J., Chang, H., Li, E. and Fan, G. 2005. Dynamic expression of de novo DNA methyl transferases Dnmt3a and Dnmt3b in the central nervous system. Journal of Neuroscience Research, 79(6): 734-746.

Galgani, J.E. and Fernández-Verdejo, R. 2021. Pathophysiological role of metabolic flexibility on metabolic health. Obesity Reviews, 22(2): e13131. [https://doi.org/10.1111/obr.13131]. Gorman, G.S., Chinnery, P.F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R. and Turnbull, D.M. 2016. Mitochondrial diseases. Nature Reviews Disease Primers, 2(1): 1-22.

Goto, K., Numata, M., Komura, J.I., Ono, T., Bestor, T.H. and Kondo, H. 1994. Expression of DNA methyl transferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation, 56(1-2): 39-44.

IuV, P. 2001. The role of mitochondrial calcium overload and energy deficiency in pathogenesis of arterial hypertension. Arkhiv Patologii, 63(3): 3-10.

Kim, M., Long, T.I., Arakawa, K., Wang, R., Yu, M.C. and Laird, P.W. 2010. DNA methylation as a biomarker for cardiovascular disease risk. PloS one, 5(3), e9692. [https://doi.org/10.1371/journal.pone.0009692].

Lesk, A.M. 2017. Introduction to Genomics. Oxford University Press, Oxford, UK. Libby, P., Bornfeldt, K.E. and Tall, A.R. 2016. Atherosclerosis: Successes, surprises, and future challenges. Circulation Research, 118(4): 531-534.

Mitochondrial DNA methylation & cardiovascular diseases 347

Lorente, L., Martín, M.M., López-Gallardo, E., Iceta, R., Blanquer, J., Solé-Violán, J. and Ruiz Pesini, E. 2014. Higher platelet cytochrome oxidase specific activity in surviving than in non surviving septic patients. Critical Care, 18(3): 1-7.

Makar, K.W. and Wilson, C.B. 2004. DNA methylation is a nonredundant repressor of the Th2 effector program. The Journal of Immunology, 173(7): 4402-4406.

Moore, L.D., Le, T. and Fan, G. 2013. DNA methylation and its basic function. Neuropsychopharmacology, 38(1): 23-38.

Movassagh, M., Choy, M.K., Goddard, M., Bennett, M.R., Down, T.A. and Foo, R.S.Y. 2010. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PloS one, 5(1): e8564. [https://doi.org/10.1371/journal.pone.0008564].

Park, S.H., Lee, S.Y. and Kim, S.A. 2021. Mitochondrial DNA methylation is higher in acute coronary syndrome than in stable coronary artery disease. In vivo (Athens, Greece), 35(1): 181-189. Poznyak, A.V., Ivanova, E.A., Sobenin, I.A., Yet, S.F. and Orekhov, A.N. 2020. The role of mitochondria in cardiovascular diseases. Biology, 9(6): 137 [https://doi.org/10.3390/biology9060137].

Sawabe, M., Tanaka, M., Chida, K., Arai, T., Nishigaki, Y., Fuku, N. and Tanaka, N. 2011. Mitochondrial haplogroups A and M7a confer a genetic risk for coronary atherosclerosis in the Japanese elderly: An autopsy study of 1536 patients. Journal of Atherosclerosis and Thrombosis, 18(2): 166-175.

Sharma, N., Pasala, M.S. and Prakash, A. 2019. Mitochondrial DNA: Epigenetics and environment. Environmental and Molecular Mutagenesis, 60(8): 668-682.

Siasos, G., Tsigkou, V., Kosmopoulos, M., Theodosiadis, D., Simantiris, S., Tagkou, N.M. and Papavassiliou, A.G. 2018. Mitochondria and cardiovascular diseases - From pathophysiology to treatment. Annals of Translational Medicine, 6(12): 256. [https://doi.org/10.21037/atm.2018.06.21].

Smith, R.L., Soeters, M.R., Wüst, R.C.I. and Houtkooper, R.H. 2018. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocrine Reviews, 39(4): 489-517.

Sobenin, I.A., Karagodin, V.P., Melnichenko, A.C., Bobryshev, Y.V. and Orekhov, A.N. 2013. Diagnostic and prognostic value of low-density lipoprotein-containing circulating immune complexes in atherosclerosis. Journal of Clinical Immunology, 33(2): 489-495.

Vindis, C., Elbaz, M., Escargueil-Blanc, I., Augé, N., Heniquez, A., Thiers, J.C. and Salvayre, R. 2005. Two distinct calcium-dependent mitochondrial pathways are involved in oxidized LDL induced apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(3): 639-645.

Vogt, S., Ruppert, V., Pankuweit, S., Paletta, J.P.J., Rhiel, A., Weber, P., Irqsusi, M., Cybulski, P. and Ramzan, R. 2018. Myocardial insufficiency is related to reduced subunit 4 content of cytochrome C oxidase. Journal of Cardiothoracic Surgery, 13(1): 1-9.

Wang, X., Song, C., Zhou, X., Han, X., Li, J., Wang, Z. and Cao, H. 2017. Mitochondria associated microRNA expression profiling of heart failure. BioMed Research International, 2017: 4042509. [https://doi.org/10.1155/2017/4042509].

Ward, N.C. and Croft, K.D. 2006. Hypertension and oxidative stress. Clinical and Experimental Pharmacology & Physiology, 33(9): 872-876.

Zhong, J., Agha, G. and Baccarelli, A.A. 2016. The role of DNA methylation in cardiovascular risk and disease: Methodological aspects, study design, and data analysis for epidemiological studies. Circulation Research, 118(1): 119-131.

Zhou, B. and Tian, R. 2018. Mitochondrial dysfunction in pathophysiology of heart failure. The Journal of Clinical Investigation, 128(9): 3716-3726.

Zhou, H., Wang, H., Yu, M., Schugar, R.C., Qian, W., Tang, F., Liu, W., Yang, H., McDowell, R.E., Zhao, J., Gao, J., Dongre, A., Carman, J.A., Yin, M., Drazba, J.A., Dent, R., Hine, C., Chen, Y. R., Smith, J.D., Fox, P.L. and Li, X. 2020. IL-1 induces mitochondrial translocation of IRAK2 to suppress oxidative metabolism in adipocytes. Nature Immunology, 21(10): 1219-1231.

Published

2023-08-02

How to Cite

Mitochondrial Dna Methylation: A Possible Breach In Pathophysiology Of Cardiovascular Diseases . (2023). Applied Biological Research, 25(3), 337–347. https://doi.org/10.48165/