Optimization Of Genetic Transformation In Spilanthes Acmella Murr By Using Agrobacterium Tumefaciens Strain Eha 105 Carrying A Binary Plasmid Vector (Pcambia1301)
DOI:
https://doi.org/10.48165/Keywords:
Agrobacterium tumefaciens, Spillanthes acmella, GUS gene, pCAMBIA 1301 vector, transformation, acetosyringoneAbstract
pilanthes acmella Murr belonging to Asteraceae is used both as an ornamental and medicinal plant. The present study was aimed to optimize Agrobacterium tumefaciens–mediated transformation of S. acmella. The bacterial density, infection period, co-cultivation temperature and acetosyringone (AS) concentration were evaluated by using leaf explants in transformation. Bacterial culture was added to 50 mL liquid YEP medium supplemented with kanamycin and rifampicin; and grown until it reached the required growth phases (A600nm). Bacterial optical density ranging from A600nm 0.15, 0.53, 1.0 and 1.5 were used. The co-cultivation medium (liquid MS medium) consisted of various concentrations of AS ranging from 100-500 μM. Histochemical analysis of β glucuronidase (GUS) gene expression was carried out in control and transformed leaf explants. Higher bacterial density resulted in more transformation efficiency, but also higher necrosis in explants. Dilution of bacterial suspension reduced necrosis in explants and resulted in higher transformation. The optimized conditions for efficient transformation were: 1:10 dilution of A600nm 0.15 bacterial density, infection period 30 min, cocultivation temperature of 22oC. The addition of AS into bacterial inoculum at 100 μM resulted in 2.5-fold increase in transformation efficiency. In future, useful genes can be introduced into S. acmella by using A. tumefaciens carrying a binary vector pCAMBIA 1301.
Downloads
References
Abraham, L.N., Kamala, S., Sreekumar, J. and Makeshkumar, T. 2021. Optimization of parameters to improve transformation efficiency of elephant foot yam (Amorphophallus paeoniifolius (Dennst.) Nicolson. 3 Biotech, 11(6): 272. [https://doi.org/10.1007/s13205-021-02824-6].
Optimization of genetic transformation in Spilanthes acmella 335
Alok, A., Shukla, V., Pala, Z., Kumar, J., Kudale, S. and Desai, N. 2016. In vitro regeneration and optimization of factors affecting Agrobacterium-mediated transformation in Artemisia pallens, an important medicinal plant. Physiology and Molecular Biology of Plants, 22: 261-269.
Ashrafi-Dehkordi, E., Alemzadeh, A., Tanaka, N. and Razi, H. 2021. Effects of vacuum infiltration, Agrobacterium cell density and acetosyringone concentration on Agrobacterium-mediated transformation of bread wheat. Journal of Consumer Protection and Food Safety, 16: 59-69.
Braun. A.C. 1947. Thermal studies on the factors responsible for tumor initiation in crown gall. American Journal of Botany, 1: 234-240.
Chakrabarty, R., Viswakarma, N., Bhat, S.R., Kirti, P.B., Singh, B.D. and Chopra, V.L. 2002. Agrobacterium-mediated transformation of cauliflower: Optimization of protocol and development of Bt-transgenic cauliflower. Journal of Biosciences, 27(5): 495-502.
Chan, M.T., Lee, T.M. and Chang, H.H. 1992. Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant and Cell Physiology, 33(5): 577-583. Collado, R., Bermúdez-Caraballoso, I., García, L.R., Veitía, N., Torres, D., Romero, C. and Angenon, G. 2016. Epicotyl sections as targets for plant regeneration and transient transformation of common bean using Agrobacterium tumefaciens. In Vitro Cellular & Developmental Biology Plant, 52: 500-511.
Collado, R., Bermúdez-Caraballoso, I., García, L. R., Veitía, N., Torres, D., Romero, C. and Angenon, G. 2015. Agrobacterium-mediated transformation of Phaseolus vulgaris L. using indirect organogenesis. Scientia Horticulturae, 195: 89-100.
Dallazen, J.L., Maria-Ferreira, D., da Luz, B.B., Nascimento, A.M., Cipriani, T.R., de Souza, L.M., Felipe, L.P.G., Silva, B.J.G., Nassini, R. and de Paula Werner M.F. 2020. Pharmacological potential of alkylamides from Acmella oleracea flowers and synthetic isobutylalkyl amide to treat inflammatory pain. Inflammopharmacology. 28: 175-186.
Dolgov, S.V., Mitiouchkina, T.Y. and Skryabin, K.G. 1997. Agrobacterial transformation of chrysanthemum. Acta Horticulturae, 447: 329-333.
Farkhondehtale, N.M., Dorani, E., Haddad, R. and Ebadi, A.A. 2022. Establishment of callus induction, cell suspension culture, and Agrobacterium-mediated transformation system for Iranian rice cultivars. Journal of Agricultural Science and Technology, 24(5): 1217-1232.
Fullner, K.J, and Lara, J.C. 1996. Nester EW. Pilus assembly by Agrobacterium T-DNA transfer genes. Science, 273(5278): 1107-1109.
Gnasekaran, P., James Antony, J.J., Uddain, J. and Subramaniam, S. 2014. Agrobacterium-mediated transformation of the recalcitrant vanda kasem's delight orchid with higher efficiency. The Scientific World Journal, 2014: [https://doi.org/10.1155/2014/583934].
Hayta, S., Smedley, M.A., Demir, S.U., Blundell, R., Hinchliffe, A., Atkinson, N. and Harwood, W.A. 2019. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 15: 1-15.
Jayaseelan, D., Deepthi, D.C., Beena, M.R., Sheela, M.N. and Makeshkumar, T. 2017. Scrutinising the most efficient explant for Agrobacterium mediated transformation in Indian cassava variety, H226. Journal of Root Crops, 43(2): 41-52.
Jefferson, A.R. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reports, 5: 387-405.
Joshi, V., Sharma, G.D. and Jadhav, S.K. 2020. Alkamides: Multifunctional bioactive agents in Spilanthes spp. Journal of Scientific Research, 64: 198-206.
Kalbande, B.B. and Patil, A.S. 2016. Plant tissue culture independent Agrobacterium tumefaciens mediated In-planta transformation strategy for upland cotton (Gossypium hirsutum). Journal of Genetic Engineering and Biotechnology, 14(1): 9-18.
Kutty, P.C., Parveez, G.K. and Huyop, F. 2010. An easy method for Agrobacterium tumefaciens mediated gene transfer to Nicotiana tabacum cv. TAPM26. Journal of Biological Sciences, 10(6): 480-489.
V.N. Swetha Prasuna et al.
Lalthanpuii, P.B. and Lalchhandama, K. 2020. Chemical composition and broad-spectrum anthelmintic activity of a cultivar of toothache plant, Acmella oleracea, from Mizoram, India. Pharmaceutical Biology, 58: 393-399.
Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N. and Li, Y. 2017. Optimization of Agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8: [https://doi.org/10.3389.fpls.2017.00246].
Li, Y., Chen, T., Wang, W., Liu, H., Yan, X., Wu-Zhang, K. and Tang, K. 2021. A high-efficiency Agrobacterium-mediated transient expression system in the leaves of Artemisia annua L. Plant Methods, 17: 1-12.
Maggini, V., Bettini, P., Firenzuoli, F. and Bogani, P. 2021. An efficient method for the genetic transformation of Acmella oleracea L. (Spilanthes acmella Linn.) with Agrobacterium tumefaciens. Plants, 10(2): [https://doi.org/10.3390/plants10020198].
Mishra, S., Bansal, S., Sangwan, R.S. and Sangwan, N.S. 2016. Genotype independent and efficient Agrobacterium-mediated genetic transformation of the medicinal plant Withania somnifera Dunal. Journal of Plant Biochemistry and Biotechnology, 25: 191-198.
Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497.
Niedbała, G., Niazian, M. and Sabbatini, P. 2021. Modeling Agrobacterium-mediated gene transformation of tobacco (Nicotiana tabacum) - A model plant for gene transformation studies. Frontiers in Plant Science, 12: [https://doi.org/10.3389/fpls.2021.695110].
Ratanasut, K., Rod-In, W. and Sujipuli, K. 2017. In planta Agrobacterium-mediated transformation of rice. Rice Science, 24(3): 181-186.
Sainger, M., Chaudhary, D., Dahiya, S., Jaiwal, R. and Jaiwal, P.K. 2015. Development of an efficient in vitro plant regeneration system amenable to Agrobacterium-mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper). Physiology and Molecular Biology of Plants, 21: 505-517.
Salas, M., Park, S., Srivatanakul, M. and Smith, R. 2001. Temperature influence on stable T-DNA integration in plant cells. Plant Cell Reports, 20(8): 701-705.
Satish, L., Ceasar, S.A. and Ramesh, M. 2017. Improved Agrobacterium-mediated transformation and direct plant regeneration in four cultivars of finger millet (Eleusine coracana (L.) Gaertn.). Plant Cell, Tissue and Organ Culture, 131: 547-565.
Savadi, R.V., Yadav, R. and Yadav, N. 2010. Study on immunomodulatory activity of ethanolic extract Spilanthes acmella Murr. leaves. Indian Journal of Natural Products and Resources, 1(2): 204-207.
Singh, M. and Chaturvedi, R. 2012. Evaluation of nutrient uptake and physical parameters on cell biomass growth and production of spilanthol in suspension cultures of Spilanthes acmella Murr. Bioprocess and Biosystems Engineering, 35: 943-951.
Singh, M. and Chaturvedi, R. 2012. Screening and quantification of an antiseptic alkylamide, spilanthol from in vitro cell and tissue cultures of Spilanthes acmella Murr. Industrial Crops and Products, 36: 321-328.
Uthpala, T.G.G. and Navaratne, S.B. 2021. Acmella oleracea plant: Identification, applications and use as an emerging food source - Review. Food Reviews International, 37(4): 399-414. Yadav, K. and Singh, N. 2010. Micropropagation of Spilanthes acmella Murr. - An important medicinal plant. Nature and Science, 8(9): 5-11.
Zhang, Z. and Finer, J.J. 2016. Low Agrobacterium tumefaciens inoculum levels and a long co-culture period lead to reduced plant defense responses and increase transgenic shoot production of sunflower (Helianthus annuus L.). In Vitro Cellular & Developmental Biology -Plant, 52: 354- 366.