In Silico Studies On The Binding Affinity Of Rosmarinic Acid, Alpha Tocopherol And Their Derivatives With Cyp51 Of Candida Species And Their Drug Likeliness Potencies
DOI:
https://doi.org/10.48165/Keywords:
Antioxidants, binding affinity, Candida, CYP51, dockingAbstract
Various drugs are available to combat Candida infections by targeting sterol 14α-demethylase (CYP51) enzyme involved in ergosterol biosynthesis. However, most drugs have limitations due to the adversities and development of drug resistance by Candida species. Our study aimed at exploring natural alternatives in combating Candida-based infections for which antifungal efficacy of some selected antioxidants was evaluated using computational biology tools. The herbal molecules rosmarinic acid (RA), methyl rosmarinic acid (MRA), α tocopherol (AT) and α-tocopherol acetate (ATA) were used as ligands for docking with CYP51 of C. albicans and C. glabrata using PatchDock docking tool. The drug likeliness analysis was done using Lipinski filter and AdmetSAR. The binding efficiency of RA, MRA, AT, ATA and fluconazole for CYP51 of C. albicans were observed to be -302.25, -346.74, -393.33, -442.80 and -280.21, respectively, while for CYP51 ofC. glabrata it was-309.89, -324.47, -428.24,-464.5 and -256.6, respectively. All the selected molecules showed better binding affinity to CYP51 in both Candida species with respect to fluconazole, and also satisfied the criteria of drug likeliness. The present study demonstrated the potent drug likeliness of the four molecules that may contribute in designing novel in vivo therapeutic strategies against Candida infections.
Downloads
References
Abedini, A., Roumy, V., Neut, C., Biabiany, M., Joseph, H., Sahpaz, S. and Hennebelle, T. 2012. Antibacterial activity of the methanolic extract of Hyptis atrorubens (Lamiaceae). Planta Medica, 78(11). [PD135. doi: 10.1055/s-0032-1320493].
Agarwal, V., Lal, P. and Pruthi, V. 2010. Effect of plant oils on Candida albicans. Journal of Microbiology, Immunology and Infection, 43(5): 447-451.
Beijersbergen van Henegouwen, G.M., Junginger, H.E. and de Vries, H. 1995. Hydrolysis of RRR alpha-tocopheryl acetate (vitamin E acetate) in the skin and its UV protecting activity (an in vivo study with the rat). Journal of Photochemistry and Photobiology. B. Biology, 29(1): 45-51.
Belhachemi, M.H., Boucherit-Otmani, Z., Boucherit, K. and Belmir, S. 2021. Influence of ascorbic acid and α-tocopherol on the autoxidation and in vitro antifungal activity of amphotericin B. Current Medical Mycology, 7(1), p.12. [doi: 10.18502/cmm.7.1.6178].
Berman, J. and Sudbery, P.E. 2002. Candida albicans: A molecular revolution built on lessons from budding yeast. Nature Reviews Genetics, 3(12): 918-931.
Bidossi, A., Bortolin, M., Toscano, M., De Vecchi, E., Romanò, C.L., Mattina, R. and Drago, L. 2017. In vitro comparison between α-tocopheryl acetate and α-tocopheryl phosphate against bacteria responsible of prosthetic and joint infections. PLoS One, 12(7): e0182323 [doi: 10.1371/journal.pone.0182323].
Campoccia, D., Visai, L., Renò, F., Cangini, I., Rizzi, M., Poggi, A. and Arciola, C.R. 2015. Bacterial adhesion to poly‐ (d, l) lactic acid blended with vitamin E: Toward gentle anti‐infective biomaterials. Journal of Biomedical Materials Research Part A, 103(4): 1447-1458.
Cannon, R.D., Lamping, E., Holmes, A.R., Niimi, K., Baret, P.V., Keniya, M.V. and Monk, B.C. 2009. Efflux-mediated antifungal drug resistance. Clinical Microbiology Reviews, 22(2): 291- 321.
Cheah P.B. and Gan S.P. 2000. International association for food protection research note anti oxidative/ antimicrobial effects of galangal and a-tocopherol in minced beef. Journal of Food Protection, 63(3): 404-407.
Duhovny, D., Nussinov, R., and Wolfson, H.J. 2002. Efficient unbound docking of rigid molecules. pp. 185-200. International Workshop on Algorithms in Bioinformatics. Springer, Berlin, Heidelberg, Germany.
In silico studies on CYP51 of Candida species 301
Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P.W. and Tang, Y. 2012. AdmetSAR: A comprehensive source and free tool for evaluating chemical ADMET properties. Journal of Chemical Information and Modelling, 52(11): 3099-3105.
Guo, F., Li, S.C., Wang, L., and Zhu, D. 2012. Protein-protein binding site identification by enumerating the configurations. BMC bioinformatics, 13(1): 1-25.
Gupta, A.K. and Tomas, E. 2003. New antifungal agents. Dermatologic Clinics, 21(3): 565-576. Hickl, J., Argyropoulou, A., Sakavitsi, M.E., Halabalaki, M., Al-Ahmad, A., Hellwig, E. and Karygianni, L. 2018. Mediterranean herb extracts inhibit microbial growth of representative oral microorganisms and biofilm formation of Streptococcus mutans. PLoS One, 13(12), e0207574. [doi: 10.1371/journal.pone.0207574].
Hoyer, L.L. 2001. The ALS gene family of Candida albicans. Trends in Microbiology, 9(4): 176-180. Huang, B. 2009. MetaPocket: A meta approach to improve protein ligand binding site prediction. OMICS Journal of Integrative Biology, 13(4): 325-330.
Jayanthy, G. and Subramanian, S. 2013. Extraction, isolation and characterization of rosmarinic acid, a major polyphenol in non-volatile constituent of mint leaves. Asian Journal of Research in Chemistry. 6(12):1160-1165.
Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S. and Shekhar, V. 2012. Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. BMC bioinformatics, 13(17): 1-13.
Kaleli, I., Cevahir, N., Demir, M., Yildirim, U. and Sahin, R. 2007. Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens. Mycoses, 50(1): 74-78. Kernou, O.N., Azzouz, Z., Madani, K. and Rijo, P. 2023. Application of rosmarinic acid with its derivatives in the treatment of microbial pathogens. Molecules, 28(10); 4243. [https://doi.org/10.3390/molecules28104243].
Kosuri, T., Nayak, S., Gul, M.Z., Rupula, K. and Beedu, S.R. 2018. TLC-digital image-based fluorometric analysis of ergosterol and chitin content in food grains artificially infested with Aspergillus flavus and Fusarium verticillioides. Food Analytical Methods, 11: 1267-1280.
Krcmery, V. and Barnes, A.J. 2002. Non-albicans Candida spp. causing fungaemia: Pathogenicity and antifungal resistance. Journal of Hospital Infection, 50(4): 243-260.
Krzeminska, M., Owczarek, A., Gonciarz, W., Chmiela, M., Olszewska, M.A. and Grzegorczyk Karolak, I. 2022. The antioxidant, cytotoxic and antimicrobial potential of phenolic acids enriched extract of elicited hairy roots of Salvia bulleyana. Molecules, 27(3): 992. [https://doi.org/10.3390/molecules27030992].
Laskowski, R.A., Hutchinson, E.G., Michie, A.D., Wallace, A.C., Jones, M.L. and Thornton, J.M., 1997. PDBsum: A Web-based database of summaries and analyses of all PDB structures. Trends in Biochemical Sciences, 22(12): 488-490.
Lipinski, C.A. 2004. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4): 337- 341.
Lu, Y. and Foo, L.Y. 1999. Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry, 51(1): 91-94.
Maschmeyer, G. 2006. The changing epidemiology of invasive fungal infections: New threats. International Journal of Antimicrobial Agents, 27: 3-6.
Nisha, C.M., Kumar, A., Nair, P., Gupta, N., Silakari, C., Tripathi, T. and Kumar, A. 2016. Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β secretase. Advances in Bioinformatics, 2016: 9258578 [doi: 10.1155/2016/9258578].
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. and Ferrin, T.E. 2004. UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13): 1605-1612.
Prachayasittikul, V. and Prachayasittikul, V. 2016. P-glycoprotein transporter in drug development. Experimental and Clinical Sciences Journal, 15: 113-118.
Vidya Chernapalli et al.
Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. and Wolfson, H.J. 2005. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic acids Research, 33: 363-367. Scorzoni, L., de Paula e Silva, A.C., Marcos, C.M., Assato, P.A., de Melo, W.C., de Oliveira, H.C.,
Costa-Orlandi, C.B., Mendes-Giannini, M.J. and Fusco-Almeida, A.M. 2017. Antifungal therapy: New advances in the understanding and treatment of mycosis. Frontiers in Microbiology, 8: 36. [doi: 10.3389/fmicb.2017.00036].
Seitz, L.M. 1979. Ergosterol as a measure of fungal growth. Phytopathology, 69: 1202-1203. Serafini, M. 2000. Dietary vitamin E and T cell-mediated function in the elderly: Effectiveness and mechanism of action. International Journal of Developmental Neuroscience, 18(4-5): 401-410. Shi, Q.Q., Dang, J., Wen, H.X., Yuan, X., Tao, Y.D. and Wang, Q.L. 2016. Anti-hepatitis antioxidant activities and bioactive compounds of Dracocephalum heterophyllum extracts. Botanical Studies, 57(1): 1-11.
Shokri, H., Khosravi, A.R. and Yalfani, R. 2011. Antifungal efficacy of propolis against fluconazole‐ resistant Candida glabrata isolates obtained from women with recurrent vulvovaginal candidiasis. International Journal of Gynecology & Obstetrics, 114(2): 158-159.
Suriyarak, S., Bayrasy, C., Schmidt, H., Villeneuve, P. and Weiss, J. 2013. Impact of fatty acid chain length of rosmarinate esters on their antimicrobial activity against Staphylococcus carnosus LTH1502 and Escherichia coli K-12 LTH4263. Journal of Food Protection, 76(9): 1539-1548.
Suriyarak, S., Schmidt, H., Villeneuve, P. and Weiss, J. 2018. Morphological and dose-dependent study on the effect of methyl, hexyl, and dodecyl rosmarinate on Staphylococcus carnosus LTH1502: Use of the Weibull model. Journal of Food Protection. 81(4): 598-605.
Tournu, H., Serneels, J. and Dijck, P.V. 2005. Fungal pathogens research: novel and improved molecular approaches for the discovery of antifungal drug targets. Current Drug Targets, 6(8): 909-922.
Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z. and Tang, Y. 2019. AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6): 1067- 1069.
Zhang, Z., Li, Y., Lin, B., Schroeder, M. and Huang, B. 2011. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics, 27(15): 2083-2088.