Biosynthesis Of Silver Nanoparticles Using The Cell-Free Filtrate Of Streptomyces Atacamensis: Characterization And Antibacterial Activity

Authors

  • Arun Kumar Kulshrestha Department of Biotechnology, Ganpat University, Mehsana – 384 012, Gujarat (India)
  • Priti Hemant Patel Department of Biotechnology, Ganpat University, Mehsana – 384 012, Gujarat (India)

DOI:

https://doi.org/10.48165/

Keywords:

Antibacterial activity, phylogenetic tree, silver nano particles, TEM, Zeta potential

Abstract

A bacterial strain was isolated from a soil near the bank Tapi river, Surat (India) and identified as Streptomyces atacamensis AK3 on the basis of 16s  rRNA gene sequencing. The strain possessed reducing agents which  enabled it to produce silver nano-particles (AgNPs). The peak observed at  420 nm and turning the broth culture colour to brown indicated the  synthesis of AgNPs. Zeta potential of -14 mV revealed a low degree of aggregation of AgNPs. Mostly, AgNPs were spherical, ovoid, and  rhomboid. TEM analysis revealed that AgNPs of size ~20 nm were most  ample. The zones of inhibition (ZOI) against Staphylococcus aureus, Bacillus cereusEscherichia coli and Pseudomonas ± 2, 17 ± 1, 24 ± 2, and 22 ± 2 mm, respectively. The  antibiotics or AgNPs: GM30 and MET30 only produced bigger ZOI against S. aureus than 35 μg mL-1 AgNPs. It was only CFS30 that made  bigger ZOI against E. coli than 10 μg mL-1 AgNPs. The use of 35 μg mL-1 AgNPs against B. cereus did not yield the similar output as they barely made 17 ± 1 mm ZOI while the use of 35 AgNPs μg mL-1 yielded fruitful  results against P. aeruginosa in comparison to those of antibiotics. 

Downloads

Download data is not yet available.

References

Abdeen, S., Geo, S., Sukanya, S., Praseetha, P. and Dhanya, R. 2014. Biosynthesis of silver nanoparticles from actinomycetes for therapeutic applications. International Journal of Nano Dimension, 5(2): 155-162.

Abdel-Aziz, M., Hathout, A., El-Neleety, A., Hamed, A., Sabry, B., Aly, S. and Abdel-Wahhab, M. 2019. Molecular identification of actinomycetes with antimicrobial, antioxidant and anticancer properties. Comunicata Scientiae, 10(2): 218-231.

Abd-Elnaby, H., Abo-Elala, G., Abdel-Raouf, U. and Hamed, M. 2016. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. The Egyptian Journal of Aquatic Research, 42(3): 301-312.

Al-Dhabi, N., Mohammed Ghilan, A. and Arasu, M. 2018. Characterization of silver nanomaterials derived from marine Streptomyces sp. Al-Dhabi-87 and its in vitro application against multidrug resistant and extended-spectrum beta-lactamase clinical pathogens. Nanomaterials, 8(5): 279. [doi: 10.3390/nano8050279].

Bruno, W., Socci, N. and Halpern, A. 2000. Weighted Neighbor Joining: A Likelihood-based approach to Distance-based phylogeny reconstruction. Molecular Biology and Evolution, 17(1): 189-197.

Butler, K., Peeler, D., Casey, B., Dair, B. and Elespuru, R. 2015. Silver nanoparticles: Correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis, 30(4): 577-591. Chakraborty, B., Kumar, R., Almansour, A., Gunasekaran, P. and Nayaka, S. 2022. Bioprospection and secondary metabolites profiling of marine Streptomyces levis strain KS46. Saudi Journal of Biological Sciences, 29(2): 667-679.

Chen, D., Qiao, X., Qiu, X. and Chen, J. 2009. Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. Journal of Materials Science, 44(4): 1076-1081.

Arun Kumar Kulshrestha and Priti Hemant Patel

Dakal, T., Kumar, A., Majumdar, R. and Yadav, V. 2016. Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7. [DOI=10.3389/fmicb.2016.01831].

de Melo, A., de Oliveira Brisola Maciel, M., Sganzerla, W., da Rosa Almeida, A., de Armas, R., Machado, M., da Rosa, C., Nunes, M., Bertoldi, F. and Barreto, P. 2020. Antibacterial activity, morphology, and physicochemical stability of biosynthesized silver nanoparticles using thyme (Thymus vulgaris) essential oil. Materials Research Express, 7(1): 015087. [https://doi.org/10.1088/2053-1591/ab6c63].

Ferdous, Z. and Nemmar, A. 2020. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences, 21(7): 2375. [doi: 10.3390/ijms21072375].

Firdhouse, M. and Lalitha, P. 2015. Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology, 2015: 1-18.

Khan, I., Saeed, K. and Khan, I. 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7): 908-931.

Kotcherlakota, R., Das, S. and Patra, CR. 2019. Therapeutic Applications of Green-Synthesized Silver Nanoparticles. Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier; Oxford, UK.

Li, X., Xu, H., Chen, Z. and Chen, G. 2011. Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011: 1-16. [https://doi.org/10.1155/2011/270974].

Liao, C., Li, Y. and Tjong, S. 2019. Bactericidal and cytotoxic properties of silver nanoparticles. International Journal of Molecular Sciences, 20(2): 449. [doi: 10.3390/ijms20020449].

Liu, H., Zhang, H., Wang, J. and Wei, J. 2020. Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis. Arabian Journal of Chemistry, 13(1): 1011-1019.

Manikprabhu, D. and Lingappa, K. 2014. Synthesis of silver nanoparticles using the Streptomyces coelicolor KLMP33 pigment: An antimicrobial agent against extended-spectrum beta lactamase (ESBL) producing Escherichia coli. Materials Science and Engineering: C, 45: 434-437.

Manimaran, M. and Kannabiran, K. 2017. Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: progress and challenges. Letters in Applied Microbiology, 64(6): 401-408.

Mozafari, M., Torkaman, S., Karamouzian, F., Rasti, B. and Baral, B. 2021. Antimicrobial applications of nanoliposome encapsulated silver nanoparticles: A potential strategy to overcome bacterial resistance. Current Nanoscience, 17(1): 26-40.

Yousefi, N., Pazouki, M., Hesari, F. and Alizadeh, M., 2016. Statistical evaluation of the pertinent parameters in biosynthesis of Ag/MWf-CNT composites using Plackett-Burman design and response surface methodology. Iranian Journal of Chemistry and Chemical Engineering, 35(2): 51-62.

Nayak, S., Bhat, M., Udayashankar, A., Lakshmeesha, T., Geetha, N. and Jogaiah, S. 2020c. Biosynthesis and characterization of Dillenia indica‐mediated silver nanoparticles and their biological activity. Applied Organometallic Chemistry, 34(4). [https://doi.org/10.1002/aoc.5567].

Nayaka, S., Bhat, M., Chakraborty, B., Pallavi, S., Airodagi, D., Muthuraj, R., Halaswamy, H., Dhanyakumara, S., Shashiraj, K. and Kupaneshi, C. 2020b. Seed extract-mediated synthesis of silver nanoparticles from Putranjiva roxburghii Wall., phytochemical characterization, antibacterial activity and anticancer activity against MCF-7 cell line. Indian Journal of Pharmaceutical Sciences, 82(2): 260-269.

Ag-nanoparticles using cell-free filtrate of Streptomyces atacamensis 233

Nayaka, S., Chakraborty, B., Bhat, M., Nagaraja, S., Airodagi, D., Swamy, P., Rudrappa, M., Hiremath, H., Basavarajappa, D. and Kanakannanavar, B. 2020a. Biosynthesis, characterization, and in vitro assessment on cytotoxicity of actinomycete-synthesized silver nanoparticles on Allium cepa root tip cells. Beni-Suef University Journal of Basic and Applied Sciences, 9(1). [https://doi.org/10.1186/s43088-020-00074-8].

Pepper, I.L. and Gentry, T.J. 2015. Earth Environments. Environmental Microbiology. Elsevier Inc., New York, USA. [https://doi.org/10.1016/B978-0-12-394626-3.00004-1]. Rudrappa, M., Rudayni, H., Assiri, R., Bepari, A., Basavarajappa, D., Nagaraja, S., Chakraborty, B., Swamy, P., Agadi, S., Niazi, S. and Nayaka, S. 2022. Plumeria alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line. Nanomaterials, 12(3): 493. [doi: 10.3390/nano12030493].

Pallavi, S.S., Rudayni, H., Bepari, A., Niazi, S. and Nayaka, S. 2022. Green synthesis of silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi Journal of Biological Sciences, 29(1): 228-238.

Rose, G., Soni, R., Rishi, P. and Soni, S. 2019. Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Processing and Synthesis, 8(1): 144-156.

Saravana Kumar, P., Balachandran, C., Duraipandiyan, V., Ramasamy, D., Ignacimuthu, S. and Al Dhabi, N. 2014. Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Applied Nanoscience, 5(2): 169-180.

Selim, M., Abdelhamid, S. and Mohamed, S. 2021. Secondary metabolites and biodiversity of actinomycetes. Journal of Genetic Engineering and Biotechnology, 19(1). Article number: 72. [https://doi.org/10.1186/s43141-021-00156-9].

Sengupta, S., Pramanik, A., Ghosh, A. and Bhattacharyya, M. 2015. Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiology, 15(1). Article number: 170. [https://doi.org/10.1186/s12866-015-0495-4].

Shivabai, C. and Gutte, S. 2019. Isolation of actinomycetes from soil sample using different pretreatment methods and its comparative study. International Journal of Research and Analytical Reviews, 6(2): 697-702.

Sivalingam, P., Hong, K., Pote, J. and Prabakar, K. 2019. Extreme environment streptomyces: Potential sources for new antibacterial and anticancer drug leads? International Journal of Microbiology, 2019: 1-20. Article number: 5283948. [https://doi.org/10.1155/2019/5283948].

Sreenivasa, N., Meghashyama, B., Pallavi, S., Bidhayak, C., Dattatraya, A., Muthuraj, R., Shashiraj, K., Halaswamy, H., Dhanyakumara, S. and Vaishnavi, M. 2021. Biogenic synthesis of silver nanoparticles using Paenibacillus sp. in-vitro and their antibacterial, anticancer activity assessment against human colon tumour cell line. Journal of Environmental Biology, 42(1): 118-127.

Subramani, R. and Sipkema, D. 2019. Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural products. Marine Drugs, 17(5): 249. [https://doi.org/10.3390/md17050249].

Sukanya, M., Saju, K., Praseetha, P. and Sakthivel, G. 2013. Therapeutic potential of biologically reduced silver nanoparticles from actinomycete cultures. Journal of Nanoscience, 2013: 1-8. Article number 940719. [https://doi.org/10.1155/2013/940719].

Zhang, X., Liu, Z., Shen, W. and Gurunathan, S. 2016. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9): 1534. [https://doi.org/10.3390/ijms17091534].

Published

2022-04-21

How to Cite

Biosynthesis Of Silver Nanoparticles Using The Cell-Free Filtrate Of Streptomyces Atacamensis: Characterization And Antibacterial Activity . (2022). Applied Biological Research, 24(2), 226–233. https://doi.org/10.48165/